Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 63(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38212077

RESUMO

BACKGROUND: Fibroblast-to-myofibroblast conversion is a major driver of tissue remodelling in organ fibrosis. Distinct lineages of fibroblasts support homeostatic tissue niche functions, yet their specific activation states and phenotypic trajectories during injury and repair have remained unclear. METHODS: We combined spatial transcriptomics, multiplexed immunostainings, longitudinal single-cell RNA-sequencing and genetic lineage tracing to study fibroblast fates during mouse lung regeneration. Our findings were validated in idiopathic pulmonary fibrosis patient tissues in situ as well as in cell differentiation and invasion assays using patient lung fibroblasts. Cell differentiation and invasion assays established a function of SFRP1 in regulating human lung fibroblast invasion in response to transforming growth factor (TGF)ß1. MEASUREMENTS AND MAIN RESULTS: We discovered a transitional fibroblast state characterised by high Sfrp1 expression, derived from both Tcf21-Cre lineage positive and negative cells. Sfrp1 + cells appeared early after injury in peribronchiolar, adventitial and alveolar locations and preceded the emergence of myofibroblasts. We identified lineage-specific paracrine signals and inferred converging transcriptional trajectories towards Sfrp1 + transitional fibroblasts and Cthrc1 + myofibroblasts. TGFß1 downregulated SFRP1 in noninvasive transitional cells and induced their switch to an invasive CTHRC1+ myofibroblast identity. Finally, using loss-of-function studies we showed that SFRP1 modulates TGFß1-induced fibroblast invasion and RHOA pathway activity. CONCLUSIONS: Our study reveals the convergence of spatially and transcriptionally distinct fibroblast lineages into transcriptionally uniform myofibroblasts and identifies SFRP1 as a modulator of TGFß1-driven fibroblast phenotypes in fibrogenesis. These findings are relevant in the context of therapeutic interventions that aim at limiting or reversing fibroblast foci formation.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Camundongos , Animais , Humanos , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Diferenciação Celular , Fator de Crescimento Transformador beta1/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Cytometry A ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668123

RESUMO

Flow cytometry and fluorescence-activated cell sorting are widely used to study endothelial cells, for which the generation of viable single-cell suspensions is an essential first step. Two enzymatic approaches, collagenase A and dispase, are widely employed for endothelial cell isolation. In this study, the utility of both enzymatic approaches, alone and in combination, for endothelial cell isolation from juvenile and adult mouse lungs was assessed, considering the number, viability, and subtype composition of recovered endothelial cell pools. Collagenase A yielded an 8-12-fold superior recovery of viable endothelial cells from lung tissue from developing mouse pups, compared to dispase, although dispase proved superior in efficiency for epithelial cell recovery. Single-cell RNA-Seq revealed that the collagenase A approach yielded a diverse endothelial cell subtype composition of recovered endothelial cell pools, with broad representation of arterial, capillary, venous, and lymphatic lung endothelial cells; while the dispase approach yielded a recovered endothelial cell pool highly enriched for one subset of general capillary endothelial cells, but poor representation of other endothelial cells subtypes. These data indicate that tissue dissociation markedly influences the recovery of endothelial cells, and the endothelial subtype composition of recovered endothelial cell pools, as assessed by single-cell RNA-Seq.

3.
Emerg Infect Dis ; 29(6): 1280-1283, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37209696

RESUMO

Microscopy of mummified visceral tissue from a Medici family member in Italy identified a potential blood vessel containing erythrocytes. Giemsa staining, atomic force microscopy, and immunohistochemistry confirmed Plasmodium falciparum inside those erythrocytes. Our results indicate an ancient Mediterranean presence of P. falciparum, which remains responsible for most malaria deaths in Africa.


Assuntos
Malária Falciparum , Malária , Humanos , Malária/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparum , Microscopia/métodos , Itália/epidemiologia
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768968

RESUMO

A hallmark of acute respiratory distress syndrome (ARDS) is an accumulation of protein-rich alveolar edema that impairs gas exchange and leads to worse outcomes. Thus, understanding the mechanisms of alveolar albumin clearance is of high clinical relevance. Here, we investigated the mechanisms of the cellular albumin uptake in a three-dimensional culture of precision-cut lung slices (PCLS). We found that up to 60% of PCLS cells incorporated labeled albumin in a time- and concentration-dependent manner, whereas virtually no uptake of labeled dextran was observed. Of note, at a low temperature (4 °C), saturating albumin receptors with unlabeled albumin and an inhibition of clathrin-mediated endocytosis markedly decreased the endocytic uptake of the labeled protein, implicating a receptor-driven internalization process. Importantly, uptake rates of albumin were comparable in alveolar epithelial type I (ATI) and type II (ATII) cells, as assessed in PCLS from a SftpcCreERT2/+: tdTomatoflox/flox mouse strain (defined as EpCAM+CD31-CD45-tdTomatoSPC-T1α+ for ATI and EpCAM+CD31-CD45-tdTomatoSPC+T1α- for ATII cells). Once internalized, albumin was found in the early and recycling endosomes of the alveolar epithelium as well as in endothelial, mesenchymal, and hematopoietic cell populations, which might indicate transcytosis of the protein. In summary, we characterize albumin uptake in alveolar epithelial cells in the complex setting of PCLS. These findings may open new possibilities for pulmonary drug delivery that may improve the outcomes for patients with respiratory failure.


Assuntos
Células Epiteliais Alveolares , Clatrina , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Clatrina/metabolismo , Pulmão/metabolismo , Células Epiteliais/metabolismo , Albumina Sérica/metabolismo , Alvéolos Pulmonares/metabolismo
5.
Thorax ; 77(12): 1176-1186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35580897

RESUMO

INTRODUCTION: Chronic lung disease, that is, bronchopulmonary dysplasia (BPD) is the most common complication in preterm infants and develops as a consequence of the misguided formation of the gas-exchange area undergoing prenatal and postnatal injury. Subsequent vascular disease and its progression into pulmonary arterial hypertension critically determines long-term outcome in the BPD infant but lacks identification of early, disease-defining changes. METHODS: We link impaired bone morphogenetic protein (BMP) signalling to the earliest onset of vascular pathology in the human preterm lung and delineate the specific effects of the most prevalent prenatal and postnatal clinical risk factors for lung injury mimicking clinically relevant conditions in a multilayered animal model using wild-type and transgenic neonatal mice. RESULTS: We demonstrate (1) the significant reduction in BMP receptor 2 (BMPR2) expression at the onset of vascular pathology in the lung of preterm infants, later mirrored by reduced plasma BMP protein levels in infants with developing BPD, (2) the rapid impairment (and persistent change) of BMPR2 signalling on postnatal exposure to hyperoxia and mechanical ventilation, aggravated by prenatal cigarette smoke in a preclinical mouse model and (3) a link to defective alveolar septation and matrix remodelling through platelet derived growth factor-receptor alpha deficiency. In a treatment approach, we partially reversed vascular pathology by BMPR2-targeted treatment with FK506 in vitro and in vivo. CONCLUSION: We identified impaired BMP signalling as a hallmark of early vascular disease in the injured neonatal lung while outlining its promising potential as a future biomarker or therapeutic target in this growing, high-risk patient population.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesões do Sistema Vascular , Lactente , Recém-Nascido , Humanos , Camundongos , Animais , Recém-Nascido Prematuro , Lesões do Sistema Vascular/complicações , Lesões do Sistema Vascular/patologia , Displasia Broncopulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão , Camundongos Transgênicos , Fatores de Risco , Animais Recém-Nascidos
6.
Histochem Cell Biol ; 158(5): 435-445, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35739424

RESUMO

Mammalian pulmonary arteries divide multiple times before reaching the vast capillary network of the alveoli. Morphological analyses of the arterial branches can be challenging because more proximal branches are likely biologically distinct from more peripheral parts. Thus, it is useful to group the arterial branches into groups of coherent biology. While the generational approach of dichotomous branching is straightforward, the grouping of arterial branches in the asymmetrically branching monopodial lung is less clear. Several established classification methods return highly dissimilar groupings when employed on the same organ. Here, we established a workflow allowing the quantification of grouping results for the monopodial lung and tested various methods to group the branches of the arterial tree into coherent groups. A mouse lung was imaged by synchrotron x-ray microcomputed tomography, and the arteries were digitally segmented. The arterial tree was divided into its individual segments, morphological properties were assessed from corresponding light microscopic scans, and different grouping methods were employed, such as (fractal) generation or (Strahler) order. The results were ranked by the morphological similarity within and dissimilarity between the resulting groups. Additionally, a method from the mathematical field of cluster analysis was employed for creating a reference classification. In conclusion, there were significant differences in method performance. The Strahler order was significantly superior to the generation system commonly used to classify human lung structure. Furthermore, a clustering approach indicated more precise ways to classify the monopodial lung vasculature exist.


Assuntos
Pulmão , Artéria Pulmonar , Camundongos , Animais , Humanos , Microtomografia por Raio-X , Alvéolos Pulmonares , Análise por Conglomerados , Mamíferos
7.
Am J Respir Cell Mol Biol ; 65(6): 615-629, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34192507

RESUMO

Acute respiratory distress syndrome is often associated with elevated levels of CO2 (hypercapnia) and impaired alveolar fluid clearance. Misfolding of the Na,K-ATPase (NKA), a key molecule involved in both alveolar epithelial barrier tightness and resolution of alveolar edema, in the endoplasmic reticulum (ER) may decrease plasma membrane abundance of the transporter. Here, we investigated how hypercapnia affects the NKA ß-subunit (NKA-ß) in the ER. Exposing murine precision-cut lung slices and human alveolar epithelial A549 cells to elevated CO2 levels led to a rapid decrease of NKA-ß abundance in the ER and at the cell surface. Knockdown of ER mannosidase α class 1B member 1 and ER degradation-enhancing α-mannosidase like protein 1 by siRNA or treatment with the mannosidase α class 1B member 1 inhibitor kifunensine rescued loss of NKA-ß in the ER, suggesting ER-associated degradation (ERAD) of the enzyme. Furthermore, hypercapnia activated the unfolded protein response by promoting phosphorylation of inositol-requiring enzyme 1α (IRE1α), and treatment with an siRNA against IRE1α prevented the decrease of NKA-ß in the ER. Of note, the hypercapnia-induced phosphorylation of IRE1α was triggered by a Ca2+-dependent mechanism. In addition, inhibition of the inositol trisphosphate receptor decreased phosphorylation levels of IRE1α in precision-cut lung slices and A549 cells, suggesting that Ca2+ efflux from the ER might be responsible for IRE1α activation and ERAD of NKA-ß. In conclusion, here we provide evidence that hypercapnia attenuates maturation of the regulatory subunit of NKA by activating IRE1α and promoting ERAD, which may contribute to impaired alveolar epithelial integrity in patients with acute respiratory distress syndrome and hypercapnia.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Endorribonucleases/metabolismo , Hipercapnia/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Animais , Humanos , Camundongos
8.
Am J Respir Cell Mol Biol ; 65(1): 81-91, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33784484

RESUMO

Bronchopulmonary dysplasia (BPD), the most common sequela of preterm birth, is a severe disorder of the lung that is often associated with long-lasting morbidity. A hallmark of BPD is the disruption of alveolarization, whose pathogenesis is incompletely understood. Here, we tested the vascular hypothesis that disordered vascular development precedes the decreased alveolarization associated with BPD. Neonatal mouse pups were exposed to 7, 14, or 21 days of normoxia (21% O2) or hyperoxia (85% O2) with n = 8-11 for each group. The right lungs were fixed by vascular perfusion and investigated by design-based stereology or three-dimensional reconstruction of data sets obtained by serial block-face scanning EM. The alveolar capillary network of hyperoxia-exposed mice was characterized by rarefaction, partially altered geometry, and widening of capillary segments as shown by three-dimensional reconstruction. Stereology revealed that the development of alveolar epithelium and capillary endothelium was decreased in hyperoxia-exposed mice; however, the time course of these effects was different. That the surface area of the alveolar epithelium was smaller in hyperoxia-exposed mice first became evident at Day 14. In contrast, the surface area of the endothelium was reduced in hyperoxia-exposed mouse pups at Day 7. The thickness of the air-blood barrier decreased during postnatal development in normoxic mice, whereas it increased in hyperoxic mice. The endothelium and the septal connective tissue made appreciable contributions to the thickened septa. In conclusion, the present study provides clear support for the idea that the stunted alveolarization follows the disordered microvascular development, thus supporting the vascular hypothesis of BPD.


Assuntos
Displasia Broncopulmonar/metabolismo , Capilares/crescimento & desenvolvimento , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Capilares/patologia , Modelos Animais de Doenças , Camundongos , Alvéolos Pulmonares/patologia
9.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237794

RESUMO

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Assuntos
COVID-19/virologia , Imunoglobulinas/deficiência , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Estudos de Coortes , Feminino , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Fatores de Risco
10.
Hum Mol Genet ; 28(9): 1429-1444, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566624

RESUMO

Bronchopulmonary dysplasia (BPD), characterized by alveoli simplification and dysmorphic pulmonary microvasculature, is a chronic lung disease affecting prematurely born infants. Pulmonary hypertension (PH) is an important BPD feature associated with morbidity and mortality. In human BPD, inflammation leads to decreased fibroblast growth factor 10 (FGF10) expression but the impact on the vasculature is so far unknown. We used lungs from Fgf10+/- versus Fgf10+/+ pups to investigate the effect of Fgf10 deficiency on vascular development in normoxia (NOX) and hyperoxia (HOX, BPD mouse model). To assess the role of fibroblast growth factor receptor 2b (Fgfr2b) ligands independently of early developmentaldefects, we used an inducible double transgenic system in mice allowing inhibition of Fgfr2b ligands activity. Using vascular morphometry, we quantified the pathological changes. Finally, we evaluated changes in FGF10, surfactant protein C (SFTPC), platelet endothelial cell adhesion molecule (PECAM) and alpha-smooth muscle actin 2 (α-SMA) expression in human lung samples from patients suffering from BPD. In NOX, no major difference in the lung vasculature between Fgf10+/- and control pups was detected. In HOX, a greater loss of blood vessels in Fgf10+/- lungs is associated with an increase of poorly muscularized vessels. Fgfr2b ligands inhibition postnatally in HOX is sufficient to decrease the number of blood vessels while increasing the level of muscularization, suggesting a PH phenotype. BPD lungs exhibited decreased FGF10, SFTPC and PECAM but increased α-SMA. Fgf10 deficiency-associated vascular defects are enhanced in HOX and could represent an additional cause of morbidity in human patients with BPD.


Assuntos
Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Suscetibilidade a Doenças , Fator 10 de Crescimento de Fibroblastos/deficiência , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Animais , Biomarcadores , Displasia Broncopulmonar/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Genótipo , Hipóxia , Pulmão/patologia , Camundongos , Mutação , Neovascularização Fisiológica/genética , Consumo de Oxigênio , Fosforilação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
11.
Thorax ; 76(2): 201-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33177230

RESUMO

Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID­19. We describe the clinical, radiological and histological findings of patients with COVID­19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID­19 and might partially explain why a subgroup of COVID­19 patients benefits from systemic corticosteroids.


Assuntos
COVID-19/complicações , Pulmão/diagnóstico por imagem , Pneumonia/etiologia , SARS-CoV-2 , Idoso , Biópsia , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Tomografia Computadorizada por Raios X
12.
Histochem Cell Biol ; 155(2): 203-214, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33372249

RESUMO

The morphometric analysis of lung structure using the principles of stereology has emerged as a powerful tool to describe the structural changes in lung architecture that accompany the development of lung disease that is experimentally modelled in adult mice. These stereological principles are now being applied to the study of the evolution of the lung architecture over the course of prenatal and postnatal lung development in mouse neonates and adolescents. The immature lung is structurally and functionally distinct from the adult lung, and has a smaller volume than does the adult lung. These differences have raised concerns about whether the inflation fixation of neonatal mouse lungs with the airway pressure (Paw) used for the inflation fixation of adult mouse lungs may cause distortion of the neonatal mouse lung structure, leading to the generation of artefacts in subsequent analyses. The objective of this study was to examine the impact of a Paw of 10, 20 and 30 cmH2O on the estimation of lung volumes and stereologically assessed parameters that describe the lung structure in developing mouse lungs. The data presented demonstrate that low Paw (10 cmH2O) leads to heterogeneity in the unfolding of alveolar structures within the lungs, and that high Paw (30 cmH2O) leads to an overestimation of the lung volume, and thus, affects the estimation of volume-dependent parameters, such as total alveoli number and gas-exchange surface area. Thus, these data support the use of a Paw of 20 cmH2O for inflation fixation in morphometric studies on neonatal mouse lungs.


Assuntos
Pulmão/crescimento & desenvolvimento , Pressão , Animais , Camundongos , Camundongos Endogâmicos C57BL
13.
Nitric Oxide ; 107: 31-45, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338600

RESUMO

Along with nitric oxide (NO), the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) are emerging as potentially important players in newborn physiology, as mediators of newborn disease, and as new therapeutic modalities. Several recent studies have addressed H2S in particular in animal models of bronchopulmonary dysplasia (BPD), a common complication of preterm birth where oxygen toxicity stunts lung development. In those studies, exogenous H2S attenuated the impact of oxygen toxicity on lung development, and two H2S-generating enzymes were documented to affect pulmonary vascular development. H2S is directly generated endogenously by three enzymes, one of which, 3-mercaptopyruvate sulfurtransferase (MPST), has not been studied in the lung. In a hyperoxia-based animal model of BPD, oxygen exposure deregulated MPST expression during post-natal lung development, where MPST was localized to the smooth muscle layer of the pulmonary vessels in developing lungs. siRNA-mediated abrogation of MPST expression in human pulmonary artery smooth muscle cells in vitro limited baseline cell migration and cell proliferation, without affecting apoptosis or cell viability. In vivo, MPST was dispensable for normal lung development in Mpst-/-mice, and MPST did not contribute to stunted lung development driven by hyperoxia exposure, assessed by design-based stereology. These data demonstrate novel roles for MPST in pulmonary vascular smooth muscle cell physiology. The potential caveats of using Mpst-/- mice to study normal and aberrant lung development are also discussed, highlighting the possible confounding, compensatory effects of other H2S-generating enzymes that are present alongside MPST in the smooth muscle compartment of developing pulmonary vessels.


Assuntos
Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Pulmão/metabolismo , Músculo Liso Vascular/metabolismo , Organogênese/fisiologia , Sulfurtransferases/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Sulfurtransferases/genética
14.
Int J Mol Sci ; 22(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498887

RESUMO

Bronchopulmonary dysplasia (BPD) remains one of the most devastating consequences of preterm birth resulting in life-long restrictions in lung function. Distorted lung development is caused by its inflammatory response which is mainly provoked by mechanical ventilation, oxygen toxicity and bacterial infections. Dysfunction of resident lung mesenchymal stem cells (MSC) represents one key hallmark that drives BPD pathology. Despite all progress in the understanding of pathomechanisms, therapeutics to prevent or treat BPD are to date restricted to a few drugs. The limited therapeutic efficacy of established drugs can be explained by the fact that they fail to concurrently tackle the broad spectrum of disease driving mechanisms and by the huge overlap between distorted signal pathways of lung development and inflammation. The great enthusiasm about MSC based therapies as novel therapeutic for BPD arises from the capacity to inhibit inflammation while simultaneously promoting lung development and repair. Preclinical studies, mainly performed in rodents, raise hopes that there will be finally a broadly acting, efficient therapy at hand to prevent or treat BPD. Our narrative review gives a comprehensive overview on preclinical achievements, results from first early phase clinical studies and challenges to a successful translation into the clinical setting.


Assuntos
Displasia Broncopulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Displasia Broncopulmonar/prevenção & controle , Humanos , Pulmão
15.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878480

RESUMO

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Proteínas de Membrana/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Mucosa Respiratória/metabolismo , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Células Epiteliais Alveolares/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus , COVID-19 , Células Cultivadas , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/administração & dosagem , Oxigênio/análise , Pandemias , Receptores Virais/metabolismo , Fatores de Risco , SARS-CoV-2 , Serina Endopeptidases/genética , Serina Proteases/genética , Índice de Gravidade de Doença
16.
J Pharmacol Exp Ther ; 375(3): 478-487, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020194

RESUMO

The lysyl hydroxylases (procollagen-lysine 5-dioxygenases) PLOD1, PLOD2, and PLOD3 have been proposed as pathogenic mediators of stunted lung development in bronchopulmonary dysplasia (BPD), a common complication of preterm birth. In affected infants, pulmonary oxygen toxicity stunts lung development. Mice lacking Plod1 exhibit 15% mortality, and mice lacking Plod2 or Plod3 exhibit embryonic lethality. Therefore, to address any pathogenic role of lysyl hydroxylases in stunted lung development associated with BPD, minoxidil was administered to newborn mice in an oxygen toxicity-based BPD animal model. Minoxidil, which has attracted much interest in the management of systemic hypertension and androgenetic alopecia, can also be used to reduce lysyl hydroxylase activity in cultured cells. An in vivo pilot dosing study established 50 mg⋅kg-1⋅day-1 as the maximum possible minoxidil dose for intraperitoneal administration in newborn mouse pups. When administered at 50 mg⋅kg-1⋅day-1 to newborn mouse pups, minoxidil was detected in the lungs but did not impact lysine hydroxylation, collagen crosslinking, or lysyl hydroxylase expression in the lungs. Consistent with no impact on mouse lung extracellular matrix structures, minoxidil administration did not alter the course of normal or stunted lung development in newborn mice. At doses of up to 50 mg⋅kg⋅day-1, pharmacologically active concentrations of minoxidil were not achieved in neonatal mouse lung tissue; thus, minoxidil cannot be used to attenuate lysyl hydroxylase expression or activity during mouse lung development. These data also highlight the need for new and specific lysyl hydroxylase inhibitors. SIGNIFICANCE STATEMENT: Extracellular matrix crosslinking is mediated by lysyl hydroxylases, which generate hydroxylated lysyl residues in procollagen peptides. Deregulated collagen crosslinking is a pathogenic component of a spectrum of diseases, and thus, there is interest in validating lysyl hydroxylases as pathogenic mediators of disease and potential "druggable" targets. Minoxidil, administered at the maximum possible dose, did not inhibit lysyl hydroxylation in newborn mouse lungs, suggesting that minoxidil was unlikely to be of use in studies that pharmacologically target lysyl hydroxylation in vivo.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Minoxidil/farmacologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Lisina/metabolismo , Camundongos , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , RNA Mensageiro/genética
17.
RNA ; 24(6): 865-879, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29540511

RESUMO

The emergence of microRNA as regulators of organogenesis and tissue differentiation has stimulated interest in the ablation of microRNA expression and function during discrete periods of development. To this end, inducible, conditional modulation of microRNA expression with doxycycline-based tetracycline-controlled transactivator and tamoxifen-based estrogen receptor systems has found widespread use. However, the induction agents and components of genome recombination systems negatively impact pregnancy, parturition, and postnatal development; thereby limiting the use of these technologies between late gestation and the early postnatal period. MicroRNA inhibitor (antimiR) administration also represents a means of neutralizing microRNA function in vitro and in vivo. To date, these studies have used direct (parenteral) administration of antimiRs to experimental animals. As an extension of this approach, an alternative means of regulating microRNA expression and function is described here: the maternal-placental-fetal transmission of antimiRs. When administered to pregnant dams, antimiRs were detected in offspring and resulted in a pronounced and persistent reduction in detectable steady-state free microRNA levels in the heart, kidney, liver, lungs, and brain. This effect was comparable to direct injection of newborn mouse pups with antimiRs, although maternal delivery resulted in fewer off-target effects. Furthermore, depletion of steady-state microRNA levels via the maternal route resulted in concomitant increases in steady-state levels of selected microRNA targets. This novel methodology permits the temporal regulation of microRNA function during late gestation and in neonates, without recourse to conventional approaches that rely on doxycycline and tamoxifen, which may confound studies on developmental processes.


Assuntos
Feto/metabolismo , Troca Materno-Fetal/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Placenta/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/administração & dosagem , Células NIH 3T3 , Gravidez
18.
Anal Biochem ; 606: 113828, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745542

RESUMO

The transfection of synthetic small interfering (si)RNA into cultured cells forms the basis of studies that use RNA interference (commonly referred to as "gene knockdown") to study the impact of loss of gene or protein expression on a biological pathway or process. In these studies, mock transfections (with transfection reagents alone), and the use of synthetic negative control (apparently inert) siRNA are both essential negative controls. This report reveals that three widely-used transfection reagents (X-tremeGENE™, HiPerFect, and Lipofectamine® 2000) and five commercially-available control siRNA (from Ambion, Sigma, Santa Cruz, Cell Signaling Technology, and Qiagen) are not inert in cell-culture studies. Both transfection reagents and control siRNA perturbed steady-state mRNA and protein levels in primary mouse lung fibroblasts and in NIH/3T3 cells (a widely-used mouse embryonic fibroblast cell-line), using components of the canonical transforming growth factor-ß signaling machinery as a model system. Furthermore, transfection reagents and control siRNA reduced the viability and proliferation of both lung fibroblasts and NIH/3T3 cells. These data collectively provide a cautionary note to investigators to carefully consider the impact of control interventions, such as mock transfections and control siRNA, in RNA interference studies with synthetic siRNA.


Assuntos
RNA Interferente Pequeno/metabolismo , Transfecção , Animais , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Indicadores e Reagentes/química , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Cultura Primária de Células , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Int J Mol Sci ; 21(4)2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098115

RESUMO

Alveolar edema, impaired alveolar fluid clearance, and elevated CO2 levels (hypercapnia) are hallmarks of the acute respiratory distress syndrome (ARDS). This study investigated how hypercapnia affects maturation of the Na,K-ATPase (NKA), a key membrane transporter, and a cell adhesion molecule involved in the resolution of alveolar edema in the endoplasmic reticulum (ER). Exposure of human alveolar epithelial cells to elevated CO2 concentrations caused a significant retention of NKA-ß in the ER and, thus, decreased levels of the transporter in the Golgi apparatus. These effects were associated with a marked reduction of the plasma membrane (PM) abundance of the NKA-α/ß complex as well as a decreased total and ouabain-sensitive ATPase activity. Furthermore, our study revealed that the ER-retained NKA-ß subunits were only partially assembled with NKA α-subunits, which suggests that hypercapnia modifies the ER folding environment. Moreover, we observed that elevated CO2 levels decreased intracellular ATP production and increased ER protein and, particularly, NKA-ß oxidation. Treatment with α-ketoglutaric acid (α-KG), which is a metabolite that has been shown to increase ATP levels and rescue mitochondrial function in hypercapnia-exposed cells, attenuated the deleterious effects of elevated CO2 concentrations and restored NKA PM abundance and function. Taken together, our findings provide new insights into the regulation of NKA in alveolar epithelial cells by elevated CO2 levels, which may lead to the development of new therapeutic approaches for patients with ARDS and hypercapnia.


Assuntos
Células Epiteliais Alveolares/enzimologia , Dióxido de Carbono/metabolismo , Retículo Endoplasmático/enzimologia , Hipercapnia/enzimologia , Dobramento de Proteína , ATPase Trocadora de Sódio-Potássio/metabolismo , Células A549 , Células Epiteliais Alveolares/patologia , Animais , Retículo Endoplasmático/patologia , Humanos , Hipercapnia/patologia , Ratos
20.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L832-L887, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596603

RESUMO

Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.


Assuntos
Displasia Broncopulmonar/fisiopatologia , Pulmão/citologia , Organogênese , Alvéolos Pulmonares/citologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA