Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 588(7838): 419-423, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328665

RESUMO

A quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has a quantized Hall resistance of h/(Ce2) and vanishing longitudinal resistance under zero magnetic field (where h is the Planck constant, e is the elementary charge, and the Chern number C is an integer)1,2. The QAH effect has been realized in magnetic topological insulators3-9 and magic-angle twisted bilayer graphene10,11. However, the QAH effect at zero magnetic field has so far been realized only for C = 1. Here we realize a well quantized QAH effect with tunable Chern number (up to C = 5) in multilayer structures consisting of alternating magnetic and undoped topological insulator layers, fabricated using molecular beam epitaxy. The Chern number of these QAH insulators is determined by the number of undoped topological insulator layers in the multilayer structure. Moreover, we demonstrate that the Chern number of a given multilayer structure can be tuned by varying either the magnetic doping concentration in the magnetic topological insulator layers or the thickness of the interior magnetic topological insulator layer. We develop a theoretical model to explain our experimental observations and establish phase diagrams for QAH insulators with high, tunable Chern number. The realization of such insulators facilitates the application of dissipationless chiral edge currents in energy-efficient electronic devices, and opens up opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.

2.
Nat Mater ; 23(1): 58-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857889

RESUMO

A quantum anomalous Hall (QAH) insulator is a topological phase in which the interior is insulating but electrical current flows along the edges of the sample in either a clockwise or counterclockwise direction, as dictated by the spontaneous magnetization orientation. Such a chiral edge current eliminates any backscattering, giving rise to quantized Hall resistance and zero longitudinal resistance. Here we fabricate mesoscopic QAH sandwich Hall bar devices and succeed in switching the edge current chirality through thermally assisted spin-orbit torque (SOT). The well-quantized QAH states before and after SOT switching with opposite edge current chiralities are demonstrated through four- and three-terminal measurements. We show that the SOT responsible for magnetization switching can be generated by both surface and bulk carriers. Our results further our understanding of the interplay between magnetism and topological states and usher in an easy and instantaneous method to manipulate the QAH state.

3.
Nano Lett ; 24(27): 8320-8326, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935843

RESUMO

Magnetic topological materials with coexisting magnetism and nontrivial band structures exhibit many novel quantum phenomena, including the quantum anomalous Hall effect, the axion insulator state, and the Weyl semimetal phase. As a stoichiometric layered antiferromagnetic topological insulator, thin films of MnBi2Te4 show fascinating even-odd layer-dependent physics. In this work, we fabricate a series of thin-flake MnBi2Te4 devices using stencil masks and observe the Chern insulator state at high magnetic fields. Upon magnetic field training, a large exchange bias effect is observed in odd but not in even septuple layer (SL) devices. Through theoretical calculations, we attribute the even-odd layer-dependent exchange bias effect to the contrasting surface and bulk magnetic properties of MnBi2Te4 devices. Our findings reveal the microscopic magnetic configuration of MnBi2Te4 thin flakes and highlight the challenges in replicating the zero magnetic field quantum anomalous Hall effect in odd SL MnBi2Te4 devices.

4.
Nano Lett ; 24(23): 6974-6980, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38829211

RESUMO

The plateau phase transition in quantum anomalous Hall (QAH) insulators corresponds to a quantum state wherein a single magnetic domain gives way to multiple domains and then reconverges back to a single magnetic domain. The layer structure of the sample provides an external knob for adjusting the Chern number C of the QAH insulators. Here, we employ molecular beam epitaxy to grow magnetic topological insulator multilayers and realize the magnetic field-driven plateau phase transition between two QAH states with odd Chern number change ΔC. We find that critical exponents extracted for the plateau phase transitions with ΔC = 1 and ΔC = 3 in QAH insulators are nearly identical. We construct a four-layer Chalker-Coddington network model to understand the consistent critical exponents for the plateau phase transitions with ΔC = 1 and ΔC = 3. This work will motivate further investigations into the critical behaviors of plateau phase transitions with different ΔC in QAH insulators.

5.
Nano Lett ; 24(26): 7962-7971, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885199

RESUMO

The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures.

6.
Nano Lett ; 23(7): 2483-2489, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36930727

RESUMO

To date, the quantum anomalous Hall effect has been realized in chromium (Cr)- and/or vanadium(V)-doped topological insulator (Bi,Sb)2Te3 thin films. In this work, we use molecular beam epitaxy to synthesize both V- and Cr-doped Bi2Te3 thin films with controlled dopant concentration. By performing magneto-transport measurements, we find that both systems show an unusual yet similar ferromagnetic response with respect to magnetic dopant concentration; specifically the Curie temperature does not increase monotonically but shows a local maximum at a critical dopant concentration. We attribute this unusual ferromagnetic response observed in Cr/V-doped Bi2Te3 thin films to the dopant-concentration-induced magnetic exchange interaction, which displays evolution from van Vleck-type ferromagnetism in a nontrivial magnetic topological insulator to Ruderman-Kittel-Kasuya-Yosida (RKKY)-type ferromagnetism in a trivial diluted magnetic semiconductor. Our work provides insights into the ferromagnetic properties of magnetically doped topological insulator thin films and facilitates the pursuit of high-temperature quantum anomalous Hall effect.

7.
Nano Lett ; 23(3): 1093-1099, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715442

RESUMO

The quantum anomalous Hall (QAH) insulator carries dissipation-free chiral edge current and thus provides a unique opportunity to develop energy-efficient transformative information technology. Despite promising advances, the QAH insulator has thus far eluded any practical applications. In addition to its low working temperature, the QAH state in magnetically doped topological insulators usually deteriorates with time in ambient conditions. In this work, we store three QAH devices with similar initial properties in different environments. The QAH device without a protection layer in air shows clear degradation and becomes hole-doped. The QAH device kept in an argon glovebox without a protection layer shows no measurable degradation after 560 h, and the device protected by a 3 nm AlOx protection layer in air shows minimal degradation with stable QAH properties. Our work shows a route to preserve the dissipation-free chiral edge state in QAH devices for potential applications in quantum information technology.

8.
Nat Mater ; 21(12): 1366-1372, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36302957

RESUMO

A topological insulator (TI) interfaced with an s-wave superconductor has been predicted to host topological superconductivity. Although the growth of epitaxial TI films on s-wave superconductors has been achieved by molecular-beam epitaxy, it remains an outstanding challenge for synthesizing atomically thin TI/superconductor heterostructures, which are critical for engineering the topological superconducting phase. Here we used molecular-beam epitaxy to grow Bi2Se3 films with a controlled thickness on monolayer NbSe2 and performed in situ angle-resolved photoemission spectroscopy and ex situ magnetotransport measurements on these heterostructures. We found that the emergence of Rashba-type bulk quantum-well bands and spin-non-degenerate surface states coincides with a marked suppression of the in-plane upper critical magnetic field of the superconductivity in Bi2Se3/monolayer NbSe2 heterostructures. This is a signature of a crossover from Ising- to Rashba-type superconducting pairings, induced by altering the Bi2Se3 film thickness. Our work opens a route for exploring a robust topological superconducting phase in TI/Ising superconductor heterostructures.

9.
Phys Rev Lett ; 130(8): 086201, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36898119

RESUMO

In quantum anomalous Hall (QAH) insulators, the interior is insulating but electrons can travel with zero resistance along one-dimensional (1D) conducting paths known as chiral edge channels (CECs). These CECs have been predicted to be confined to the 1D edges and exponentially decay in the two-dimensional (2D) bulk. In this Letter, we present the results of a systematic study of QAH devices fashioned in a Hall bar geometry of different widths under gate voltages. At the charge neutral point, the QAH effect persists in a Hall bar device with a width of only ∼72 nm, implying the intrinsic decaying length of CECs is less than ∼36 nm. In the electron-doped regime, we find that the Hall resistance deviates quickly from the quantized value when the sample width is less than 1 µm. Our theoretical calculations suggest that the wave function of CEC first decays exponentially and then shows a long tail due to disorder-induced bulk states. Therefore, the deviation from the quantized Hall resistance in narrow QAH samples originates from the interaction between two opposite CECs mediated by disorder-induced bulk states in QAH insulators, consistent with our experimental observations.

10.
Phys Rev Lett ; 128(21): 216801, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687436

RESUMO

The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.

11.
Nano Lett ; 21(18): 7691-7698, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34468149

RESUMO

Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the quantum anomalous Hall (QAH) effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a nonsquare hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. We demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, whereas the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films.

12.
Nat Mater ; 19(7): 732-737, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32015537

RESUMO

The quantum anomalous Hall (QAH) effect is a consequence of non-zero Berry curvature in momentum space. The QAH insulator harbours dissipation-free chiral edge states in the absence of an external magnetic field. However, the topological Hall (TH) effect, a hallmark of chiral spin textures, is a consequence of real-space Berry curvature. Here, by inserting a topological insulator (TI) layer between two magnetic TI layers, we realized the concurrence of the TH effect and the QAH effect through electric-field gating. The TH effect is probed by bulk carriers, whereas the QAH effect is characterized by chiral edge states. The appearance of the TH effect in the QAH insulating regime is a consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii-Moriya interaction and occurs during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures provides a platform for proof-of-concept dissipationless spin-textured spintronic applications.

13.
Nano Lett ; 19(5): 2945-2952, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30942075

RESUMO

Inducing magnetic orders in a topological insulator (TI) to break its time reversal symmetry has been predicted to reveal many exotic topological quantum phenomena. The manipulation of magnetic orders in a TI layer can play a key role in harnessing these quantum phenomena toward technological applications. Here we fabricated a thin magnetic TI film on an antiferromagnetic (AFM) insulator Cr2O3 layer and found that the magnetic moments of the magnetic TI layer and the surface spins of the Cr2O3 layers favor interfacial AFM coupling. Field cooling studies show a crossover from negative to positive exchange bias clarifying the competition between the interfacial AFM coupling energy and the Zeeman energy in the AFM insulator layer. The interfacial exchange coupling also enhances the Curie temperature of the magnetic TI layer. The unique interfacial AFM alignment in magnetic TI on AFM insulator heterostructures opens a new route toward manipulating the interplay between topological states and magnetic orders in spin-engineered heterostructures, facilitating the exploration of proof-of-concept TI-based spintronic and electronic devices with multifunctionality and low power consumption.

14.
Phys Rev Lett ; 120(5): 056801, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481164

RESUMO

The "magnetoelectric effect" arises from the coupling between magnetic and electric properties in materials. The Z_{2} invariant of topological insulators (TIs) leads to a quantized version of this phenomenon, known as the topological magnetoelectric (TME) effect. This effect can be realized in a new topological phase called an "axion insulator" whose surface states are all gapped but the interior still obeys time reversal symmetry. We demonstrate such a phase using electrical transport measurements in a quantum anomalous Hall (QAH) sandwich heterostructure, in which two compositionally different magnetic TI layers are separated by an undoped TI layer. Magnetic force microscopy images of the same sample reveal sequential magnetization reversals of the top and bottom layers at different coercive fields, a consequence of the weak interlayer exchange coupling due to the spacer. When the magnetization is antiparallel, both the Hall resistance and Hall conductance show zero plateaus, accompanied by a large longitudinal resistance and vanishing longitudinal conductance, indicating the realization of an axion insulator state. Our findings thus show evidence for a phase of matter distinct from the established QAH state and provide a promising platform for the realization of the TME effect.

15.
Nat Mater ; 15(2): 204-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657329

RESUMO

The fundamental challenge for designing transparent conductors used in photovoltaics, displays and solid-state lighting is the ideal combination of high optical transparency and high electrical conductivity. Satisfying these competing demands is commonly achieved by increasing carrier concentration in a wide-bandgap semiconductor with low effective carrier mass through heavy doping, as in the case of tin-doped indium oxide (ITO). Here, an alternative design strategy for identifying high-conductivity, high-transparency metals is proposed, which relies on strong electron-electron interactions resulting in an enhancement in the carrier effective mass. This approach is experimentally verified using the correlated metals SrVO3 and CaVO3, which, despite their high carrier concentration (>2.2 × 10(22) cm(-3)), have low screened plasma energies (<1.33 eV), and demonstrate excellent performance when benchmarked against ITO. A method is outlined to rapidly identify other candidates among correlated metals, and strategies are proposed to further enhance their performance, thereby opening up new avenues to develop transparent conductors.

16.
Phys Rev Lett ; 118(23): 235301, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644645

RESUMO

We report the observation of superfluidlike mass flow through coin-shaped 8 µm thick solid ^{4}He samples sandwiched between superfluid leads. Mass flow is found from the melting pressure to at least 30 bar with a concomitant decrease in the onset temperature from 1 to 0.25 K. The mass-flow rate is found to be sample dependent and can be enhanced by thermal annealing. The flow rate decreases with temperature and decays nearly exponentially with the pressure of the samples. The dissipation associated with the mass flow decreases with temperature and becomes superfluidlike near 0.1 K. In contrast to earlier studies on centimeter-thick samples, we do not see a sharp cutoff in the mass-flow rate at low temperature.

17.
BMC Infect Dis ; 17(1): 460, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673251

RESUMO

BACKGROUND: Though home-based human immunodeficiency virus (HIV) counseling and testing (HBHCT) is implemented in many sub-Saharan African countries as part of their HIV programs, linkage to HIV care remains a challenge. The purpose of this study is to test an intervention to enhance linkage to HIV care and improve HIV viral suppression among individuals testing HIV positive during HBHCT in rural Uganda. METHODS: The PATH (Providing Access To HIV Care)/Ekkubo Study is a cluster-randomized controlled trial which compares the efficacy of an enhanced linkage to HIV care intervention vs. standard-of-care (paper-based referrals) at achieving individual and population-level HIV viral suppression, and intermediate outcomes of linkage to care, receipt of opportunistic infection prophylaxis, and antiretroviral therapy initiation following HBHCT. Approximately 600 men and women aged 18-59 who test HIV positive during district-wide HBHCT in rural Uganda will be enrolled in this study. Villages (clusters) are pair matched by population size and then randomly assigned to the intervention or standard-of-care arm. Study teams visit households and participants complete a baseline questionnaire, receive HIV counseling and testing, and have blood drawn for HIV viral load and CD4 testing. At baseline, standard-of-care arm participants receive referrals to HIV care including a paper-based referral and then receive their CD4 results via home visit 2 weeks later. Intervention arm participants receive an intervention counseling session at baseline, up to three follow-up counseling sessions at home, and a booster session at the HIV clinic if they present for care. These sessions each last approximately 30 min and consist of counseling to help clients: identify and reduce barriers to HIV care engagement, disclose their HIV status, identify a treatment supporter, and overcome HIV-related stigma through links to social support resources in the community. Participants in both arms complete interviewer-administered questionnaires at six and 12 months follow-up, HIV viral load and CD4 testing at 12 months follow-up, and allow access to their medical records. DISCUSSION: The findings of this study can inform the integration of a potentially cost-effective approach to improving rates of linkage to care and HIV viral suppression in HBHCT. If effective, this intervention can improve treatment outcomes, reduce mortality, and through its effect on individual and population-level HIV viral load, and decrease HIV incidence. TRIAL REGISTRATION: NCT02545673.


Assuntos
Infecções por HIV/diagnóstico , Acessibilidade aos Serviços de Saúde , Adolescente , Adulto , Aconselhamento , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/psicologia , Soropositividade para HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Encaminhamento e Consulta , Serviços de Saúde Rural , População Rural , Resultado do Tratamento , Uganda , Adulto Jovem
18.
Nat Mater ; 14(5): 473-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25730394

RESUMO

The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin-orbit coupling and ferromagnetism. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)2Te3 films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e(2) (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e(2)/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (Hc > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields.

19.
Phys Rev Lett ; 117(12): 126802, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27689289

RESUMO

Fundamental insight into the nature of the quantum phase transition from a superconductor to an insulator in two dimensions, or from one plateau to the next or to an insulator in the quantum Hall effect, has been revealed through the study of its scaling behavior. Here, we report on the experimental observation of a quantum phase transition from a quantum-anomalous-Hall insulator to an Anderson insulator in a magnetic topological insulator by tuning the chemical potential. Our experiment demonstrates the existence of scaling behavior from which we extract the critical exponent for this quantum phase transition. We expect that our work will motivate much further investigation of many properties of quantum phase transition in this new context.

20.
AIDS Behav ; 20(9): 1928-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27037546

RESUMO

Provider-initiated HIV testing and counseling (PITC) has rapidly expanded in many countries including Uganda. However, because it provides HIV prevention information without individualized risk assessment and risk reduction counseling it may create missed opportunities for effective HIV prevention counseling. Our objective was to assess the effect of a brief motivational interviewing-based intervention during outpatient PITC in rural Uganda compared to Uganda's standard-of-care PITC at reducing HIV transmission-relevant sexual risk behavior. We enrolled 333 (160 control, 173 intervention) participants in a historical control trial to test the intervention vs. standard-of-care. Participants received PITC and standard-of-care or the intervention counseling and we assessed sexual risk behavior at baseline and 3 and 6 months follow-up. The intervention condition showed 1.5-2.4 times greater decreases in high risk sexual behavior over time compared to standard-of-care (p = 0.015 and p = 0.004). These data suggest that motivational interviewing based counseling during PITC may be a promising intervention to reduce high-risk sexual behavior and potentially reduce risk of HIV infection.


Assuntos
Sorodiagnóstico da AIDS/métodos , Aconselhamento , Infecções por HIV/diagnóstico , Entrevista Motivacional , Assunção de Riscos , População Rural , Adulto , Assistência Ambulatorial , Feminino , Infecções por HIV/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Relações Médico-Paciente , Sistemas Automatizados de Assistência Junto ao Leito , Avaliação de Programas e Projetos de Saúde , Comportamento de Redução do Risco , População Rural/estatística & dados numéricos , Comportamento Sexual , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA