Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem B ; 109(2): 804-10, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16866445

RESUMO

The present study describes a new application of ruthenium(II) tris(bipyridine) (Ru(bpy)3(2+)) and osmium(II) tris(bipyridine) (Os(bpy)3(2+)) as phosphorescent labels for the quantification of surface binding of molecules to gold and silver nanoparticles. The fraction of Ru(bpy)3(2+) and Os(bpy)3(2+) that is in solution can be distinguished from the surface-bound fraction by the relative lifetimes and integrated emission yields as determined by time-correlated single-photon counting (TCSPC) spectroscopy. Complementary steady-state measurements were carried out to confirm surface attachment of the phosphorescent label molecules. Although the emission of solutions of Ru(bpy)3(2+) and Os(bpy)3(2+) is quenched proportional to the concentration of 10 nm Au or 20 nm Ag nanoparticles, the quenching is static and not diffusional quenching observed in Stern-Volmer plots. The results demonstrate that time-resolved spectroscopy provides a rapid method for the measurement of surface binding of labeled molecules on metallic nanoparticles. While steady-state measurements require the preparation of a series of samples with varying quencher concentrations and a reference, the method described herein requires a single sample plus reference. The mechanism for phosphorescence quenching on Au and Ag nanoparticles is discussed in terms of energy and electron transfer theories.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Prata/química , Tomografia Computadorizada de Emissão/métodos , Adsorção , Osmio/química , Piridinas/química , Rutênio/química , Sensibilidade e Especificidade , Propriedades de Superfície , Fatores de Tempo
2.
J Am Chem Soc ; 125(47): 14258-9, 2003 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-14624557

RESUMO

Laser-induced temperature jumps (LITJs) at gold nanoparticle-coated indium tin oxide (ITO) electrodes in contact with electrolyte solutions have been measured using temperature-sensitive redox probes and an infrared charge-coupled device. Upon irradiation with 532 nm light, interfacial temperature changes of ca. 20 degrees C were recorded for particle coverages of ca. 1 x 1010 cm-2. In the presence of a redox molecule, LITJ yields open-circuit photovoltages and photocurrents that are proportional to the number of particles on the surface. When ssDNA was used to chemisorb nanoparticles to the ITO surface, solution concentrations as low as 100 fM of target ssDNA-modified nanoparticles could be detected at the electrode surface.


Assuntos
DNA de Cadeia Simples/química , Eletroquímica/métodos , Ouro/química , DNA de Cadeia Simples/análise , Eletrodos , Índio/química , Lasers , Nanotecnologia , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Temperatura , Termografia/métodos
3.
Langmuir ; 20(25): 11134-40, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15568868

RESUMO

Single- and double-stranded deoxy ribonucleic acid (DNA) molecules attached to self-assembled monolayers (SAMs) on gold surfaces were characterized by a number of optical and electronic spectroscopic techniques. The DNA-modified gold surfaces were prepared through the self-assembly of 6-mercapto-1-hexanol and 5'-C(6)H(12)SH -modified single-stranded DNA (ssDNA). Upon hybridization of the surface-bound probe ssDNA with its complimentary target, formation of double-stranded DNA (dsDNA) on the gold surface is observed and in a competing process, probe ssDNA is desorbed from the gold surface. The competition between hybridization of ssDNA with its complimentary target and ssDNA probe desorption from the gold surface has been investigated in this paper using X-ray photoelectron spectroscopy, chronocoulometry, fluorescence, and polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS). The formation of dsDNA on the surface was identified by PM-IRRAS by a dsDNA IR signature at approximately 1678 cm(-)(1) that was confirmed by density functional theory calculations of the nucleotides and the nucleotides' base pairs. The presence of dsDNA through the specific DNA hybridization was additionally confirmed by atomic force microscopy through colloidal gold nanoparticle labeling of the target ssDNA. Using these methods, strand loss was observed even for DNA hybridization performed at 25 degrees C for the DNA monolayers studied here consisting of attachment to the gold surfaces by single Au-S bonds. This finding has significant consequence for the application of SAM technology in the detection of oligonucleotide hybridization on gold surfaces.


Assuntos
DNA/química , Ouro/química , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA