Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Am J Physiol Renal Physiol ; 310(9): F832-45, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26823282

RESUMO

Renal blood flow autoregulation was investigated in anesthetized C57Bl6 mice using time- and frequency-domain analyses. Autoregulation was reestablished by 15 s in two stages after a 25-mmHg step increase in renal perfusion pressure (RPP). The renal vascular resistance (RVR) response did not include a contribution from the macula densa tubuloglomerular feedback mechanism. Inhibition of nitric oxide (NO) synthase [N(G)-nitro-l-arginine methyl ester (l-NAME)] reduced the time for complete autoregulation to 2 s and induced 0.25-Hz oscillations in RVR. Quenching of superoxide (SOD mimetic tempol) during l-NAME normalized the speed and strength of stage 1 of the RVR increase and abolished oscillations. The slope of stage 2 was unaffected by l-NAME or tempol. These effects of l-NAME and tempol were evaluated in the frequency domain during random fluctuations in RPP. NO synthase inhibition amplified the resonance peak in admittance gain at 0.25 Hz and markedly increased the gain slope at the upper myogenic frequency range (0.06-0.25 Hz, identified as stage 1), with reversal by tempol. The slope of admittance gain in the lower half of the myogenic frequency range (equated with stage 2) was not affected by l-NAME or tempol. Our data show that the myogenic mechanism alone can achieve complete renal blood flow autoregulation in the mouse kidney following a step increase in RPP. They suggest also that the principal inhibitory action of NO is quenching of superoxide, which otherwise potentiates dynamic components of the myogenic constriction in vivo. This primarily involves the first stage of a two-stage myogenic response.


Assuntos
Inibidores Enzimáticos/farmacologia , Homeostase/genética , Rim/fisiologia , Músculo Liso/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Superóxido Dismutase/metabolismo , Animais , Arginina Vasopressina/farmacologia , Óxidos N-Cíclicos/farmacologia , Homeostase/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Circulação Renal/efeitos dos fármacos , Marcadores de Spin , Resistência Vascular/efeitos dos fármacos
2.
Am J Physiol Renal Physiol ; 306(10): F1143-54, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24623148

RESUMO

Renal blood flow (RBF) responses to arginine vasopressin (AVP) were tested in anesthetized wild-type (WT) and CD38(-/-) mice that lack the major calcium-mobilizing second messenger cyclic ADP ribose. AVP (3-25 ng) injected intravenously produced dose-dependent decreases in RBF, reaching a maximum of 25 ± 2% below basal RBF in WT and 27 ± 2% in CD38(-/-) mice with 25 ng of AVP. Renal vascular resistance (RVR) increased 75 ± 6% and 78 ± 6% in WT and CD38(-/-) mice. Inhibition of nitric oxide (NO) synthase with nitro-L-arginine methyl ester (L-NAME) increased the maximum RVR response to AVP to 308 ± 76% in WT and 388 ± 81% in CD38(-/-) (P < 0.001 for both). Cyclooxygenase inhibition with indomethacin increased the maximum RVR response to 125 ± 15% in WT and 120 ± 14% in CD38(-/-) mice (P < 0.001, <0.05). Superoxide suppression with tempol inhibited the maximum RVR response to AVP by 38% in both strains (P < 0.005) but was ineffective when administered after L-NAME. The rate of RBF recovery (relaxation) after AVP was slowed by L-NAME and indomethacin (P < 0.001, <0.005) but was unchanged by tempol. All vascular responses to AVP were abolished by an AVP V1a receptor antagonist. A V2 receptor agonist or antagonist had no effect on AVP-induced renal vasoconstriction. Taken together, the results indicate that renal vasoconstriction by AVP in the mouse is strongly buffered by vasodilatory actions of NO and prostanoids. The vasoconstriction depends on V1a receptor activation without involvement of CD38 or concomitant vasodilatation by V2 receptors. The role of superoxide is to enhance the contractile response to AVP, most likely by reducing the availability of NO rather than directly stimulating intracellular contraction signaling pathways.


Assuntos
ADP-Ribosil Ciclase 1/fisiologia , Rim/irrigação sanguínea , Óxido Nítrico/fisiologia , Prostaglandinas/fisiologia , Receptores de Vasopressinas/fisiologia , Superóxidos/metabolismo , Vasoconstrição/fisiologia , ADP-Ribosil Ciclase 1/deficiência , ADP-Ribosil Ciclase 1/genética , Animais , Arginina Vasopressina/farmacologia , Óxidos N-Cíclicos/farmacologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo , Receptores de Vasopressinas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Marcadores de Spin , Vasoconstrição/efeitos dos fármacos
3.
Am J Physiol Renal Physiol ; 305(6): F830-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23884143

RESUMO

The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2(·-)) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to release Ca(2+) from the sarcoplasmic reticulum in vascular smooth muscle cells. We evaluated whether the stable thromboxane mimetic U-46619 causes less pronounced renal vasoconstriction in CD38-deficient mice and the involvement of O2(·-) in U-46619-induced renal vasoconstriction. Our results indicate that U-46619 activation of TP receptors causes renal vasoconstriction in part by activating cADP-ribose signaling in renal resistance arterioles. Based on maximal renal blood flow and renal vascular resistance responses to bolus injections of U-46619, CD38 contributes 30-40% of the TP receptor-induced vasoconstriction. We also found that the antioxidant SOD mimetic tempol attenuated the magnitude of vasoconstriction by U-46619 in both groups of mice, suggesting mediation by O2(·-). The degree of tempol blockage of U-46619-induced renal vasoconstriction was greater in wild-type mice, attenuating renal vasoconstriction by 40% compared with 30% in CD38-null mice. In other experiments, U-46619 rapidly stimulated O2(·-) production (dihydroethidium fluorescence) in isolated mouse afferent arterioles, an effect abolished by tempol. These observations provide the first in vivo demonstration of CD38 and O2(·-) involvement in the vasoconstrictor effects of TP receptor activation in the kidney and in vitro evidence for TP receptor stimulation of O2(·-) production by the afferent arteriole.


Assuntos
ADP-Ribosil Ciclase 1/fisiologia , Rim/irrigação sanguínea , Glicoproteínas de Membrana/fisiologia , Superóxidos/farmacologia , Vasoconstrição/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , ADP-Ribosil Ciclase 1/deficiência , Animais , Arteríolas/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Rim/metabolismo , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Tromboxanos/efeitos dos fármacos , Receptores de Tromboxanos/fisiologia , Marcadores de Spin
4.
Am J Physiol Renal Physiol ; 300(2): F561-73, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106860

RESUMO

The peptide uroguanylin (Ugn) regulates enteric and renal electrolyte transport. Previous studies have shown that Ugn and its receptor GC-C (a ligand-activated guanylate cyclase) are abundant in the intestine. Less is known about Ugn and GC-C expression in the kidney. Here, we identify a 9.4-kDa polypeptide in rat kidney extracts that appears, based on its biochemical and immunological properties, to be authentic prouroguanylin (proUgn). This propeptide is relatively plentiful in the kidney (~16% of intestinal levels), whereas its mRNA is marginally present (<1% of intestinal levels), and free Ugn peptide levels are below detection limits (<0.4% of renal proUgn levels). The paucity of preproUgn-encoding mRNA and free Ugn peptide raises the possibility that the kidney might absorb intact proUgn from plasma, where the concentration of propeptide greatly exceeds that of Ugn. However, immunocytochemical analysis reveals that renal proUgn is found exclusively in distal tubular segments, sites previously shown not to accumulate radiolabeled proUgn after intravascular infusions. Thus proUgn appears to be synthesized within the kidney, but the factors that determine its abundance (rates of transcription, translation, processing, and secretion) must be balanced quite differently than in the gut. Surprisingly, we also find negligible expression of GC-C in the rat kidney, a result confirmed both by RT-PCR and by functional assays that measure Ugn-activated cGMP synthesis. Taken together, these data provide evidence for an intrarenal Ugn system that differs from the well-described intestinal system in its regulatory mechanisms and in the receptor targeted by the peptide.


Assuntos
Rim/metabolismo , Precursores de Proteínas/metabolismo , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Rim/química , Peptídeos Natriuréticos/análise , Peptídeos Natriuréticos/metabolismo , Precursores de Proteínas/análise , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Enterotoxina , Receptores Acoplados a Guanilato Ciclase/análise , Receptores de Peptídeos/análise
5.
Nat Biotechnol ; 39(10): 1270-1277, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33927415

RESUMO

CRISPR screens have been used to connect genetic perturbations with changes in gene expression and phenotypes. Here we describe a CRISPR-based, single-cell combinatorial indexing assay for transposase-accessible chromatin (CRISPR-sciATAC) to link genetic perturbations to genome-wide chromatin accessibility in a large number of cells. In human myelogenous leukemia cells, we apply CRISPR-sciATAC to target 105 chromatin-related genes, generating chromatin accessibility data for ~30,000 single cells. We correlate the loss of specific chromatin remodelers with changes in accessibility globally and at the binding sites of individual transcription factors (TFs). For example, we show that loss of the H3K27 methyltransferase EZH2 increases accessibility at heterochromatic regions involved in embryonic development and triggers expression of genes in the HOXA and HOXD clusters. At a subset of regulatory sites, we also analyze changes in nucleosome spacing following the loss of chromatin remodelers. CRISPR-sciATAC is a high-throughput, single-cell method for studying the effect of genetic perturbations on chromatin in normal and disease states.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Análise de Célula Única/métodos , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Epigenômica , Humanos , Leucemia Mieloide/genética , Nucleossomos/metabolismo , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , Transposases/metabolismo
6.
Am J Physiol Renal Physiol ; 299(6): F1433-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861080

RESUMO

The peptide uroguanylin (Ugn) is stored and released as a propeptide (proUgn) by enterochromaffin cells in the intestine, and converted to Ugn and other metabolites in the renal tubules. Both proUgn and Ugn are natriuretic, although the response to proUgn is thought to depend on its conversion to Ugn within nephrons. To assess the efficiency of intrarenal conversion of proUgn to Ugn, we measured urinary Ugn excretion in rats following intravenous infusions of proUgn or Ugn. Infusion of 2 and 10 nmol proUgn/kg body wt increased plasma proUgn concentration from 2.2 ± 0.3 to 5.6 ± 1.3 pmol/ml and to 37 ± 9.6 pmol/ml, respectively. No proUgn was detected in urine before, during, or after proUgn infusions. These two proUgn infusion doses resulted in total Ugn recovery in urine of 162 ± 64 and 206 ± 39 pmol/kg body wt (9 and 2% of the infused amount, respectively). By contrast, the same molar amounts of Ugn resulted in 1,009 ± 477 and 5,352 ± 2,133 pmol/kg body wt of Ugn in urine (recoveries of ∼50%). Unexpectedly, comparisons of natriuretic dose-response curves for each peptide showed proUgn to be about five times more potent than Ugn, despite the relatively modest amount of Ugn generated from infused proUgn. In addition, both peptides were antikaliuretic at low doses, but in this case Ugn showed greater potency than proUgn. These data do not support Ugn as the primary active principle of proUgn for regulation of renal sodium excretion. Instead, an alternative peptide fragment produced from proUgn may be responsible for natriuretic activity in the kidney, whereas Ugn itself may play an antikaliuretic role.


Assuntos
Túbulos Renais/metabolismo , Natriurese/efeitos dos fármacos , Peptídeos Natriuréticos/urina , Potássio/urina , Precursores de Proteínas/administração & dosagem , Animais , Peptídeos Natriuréticos/administração & dosagem , Precursores de Proteínas/sangue , Ratos , Ratos Sprague-Dawley
7.
J Clin Invest ; 129(1): 209-214, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30352048

RESUMO

The loss of insulin-secreting ß cells is characteristic among type I and type II diabetes. Stimulating proliferation to expand sources of ß cells for transplantation remains a challenge because adult ß cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human ß cells. Expression of p57 is regulated by the DNA methylation status of the imprinting control region 2 (ICR2), which is commonly hypomethylated in Beckwith-Wiedemann syndrome patients who exhibit massive ß cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator-like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased ß cell replication compared with control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing ß cell proliferation, which may one day alleviate the scarcity of transplantable ß cells for the treatment of diabetes.


Assuntos
Síndrome de Beckwith-Wiedemann/metabolismo , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p57/biossíntese , Desmetilação do DNA , Loci Gênicos , Células Secretoras de Insulina/metabolismo , Regulação para Cima , Síndrome de Beckwith-Wiedemann/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células Secretoras de Insulina/patologia , Antígeno Ki-67/biossíntese
8.
Endocrinology ; 149(9): 4499-509, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499761

RESUMO

The intestine and kidney are linked by a mechanism that increases salt excretion in response to salt intake. The peptide uroguanylin (UGn) is thought to mediate this signaling axis. Therefore, it was surprising to find (as reported in a companion publication) that UGn is stored in the intestine and circulates in the plasma almost exclusively in the form of its biologically inactive propeptide precursor, prouroguanylin (proUGn), and, furthermore, that infused proUGn leads to natriuretic activity. Here, we investigate the fate of circulating proUGn. Kinetic studies show rapid renal clearance of radiolabeled propeptide. Radiolabel accumulates at high specific activity in kidney (relative to other organs) and urine (relative to plasma). The principal metabolites found in kidney homogenates are free cysteine and methionine. In contrast, urine contains cysteine, methionine, and three other radioactive peaks, one comigrating with authentic rat UGn15. Interestingly, proUGn is not converted to these or other metabolites in plasma, indicating that circulating proUGn is not processed before entering the kidney. Therefore, our findings suggest that proUGn is the true endocrine agent released in response to salt intake and that the response of the kidney is dependent on conversion of the propeptide to an active form after it reaches the renal tubules. Furthermore, proUGn metabolites (other than small amounts of cysteine and methionine) are not returned to the circulation from the kidney or any other organ. Thus, to respond to proUGn released from the gut, any target organ must use a local mechanism for production of active peptide.


Assuntos
Túbulos Renais/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Endotélio Vascular/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Modelos Biológicos , Dados de Sequência Molecular , Natriuréticos/metabolismo , Precursores de Proteínas/sangue , Precursores de Proteínas/farmacocinética , Precursores de Proteínas/urina , Ratos , Ratos Wistar , Radioisótopos de Enxofre/farmacocinética
9.
Endocrinology ; 149(9): 4486-98, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499760

RESUMO

Orally delivered salt stimulates renal salt excretion more effectively than does iv delivered salt. Although the mechanisms that underlie this "postprandial natriuresis" are poorly understood, the peptide uroguanylin (UGn) is thought to be a key mediator. However, the lack of selective assays for UGn gene products has hindered rigorous testing of this hypothesis. Using peptide-specific assays, we now report surprisingly little UGn in rat intestine or plasma. In contrast, prouroguanylin (proUGn), the presumed-inactive precursor of UGn, is plentiful (at least 40 times more abundant than UGn) in both intestine and plasma. The intestine is the likely source of the circulating proUGn because: 1) the proUGn portal to systemic ratio is approximately two under normal conditions, and 2) systemic proUGn levels decrease rapidly after intestinal resection. Together, these data suggest that proUGn itself is actively involved in enterorenal signaling. This is strongly supported by our observation that iv infusion of proUGn at a physiological concentration produces a long-lasting renal natriuresis, whereas previously reported natriuretic effects of UGn have required supraphysiological concentrations. Thus, our data point to proUGn as an endocrine (i.e. circulating) mediator of postprandial natriuresis, and suggest that the propeptide is secreted intact from the intestine into the circulation and processed to an active form at an extravascular site.


Assuntos
Rim/metabolismo , Peptídeos Natriuréticos/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Hormônios Gastrointestinais/sangue , Hormônios Gastrointestinais/metabolismo , Intestinos/química , Masculino , Natriuréticos/sangue , Natriuréticos/metabolismo , Peptídeos Natriuréticos/sangue , Precursores de Proteínas/sangue , Precursores de Proteínas/isolamento & purificação , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sódio/metabolismo , Extratos de Tecidos/química
10.
Cell Metab ; 28(5): 787-792.e3, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30057067

RESUMO

Recent reports identified activation of the GABA signaling pathway as a means to induce transdifferentiation of pancreatic α cells into ß cells. These reports followed several previous studies that found that α cells were particularly well suited to conversion into ß cells in mice, but only after nearly complete ß cell loss or forced overexpression of key transcriptional regulators. The possibility of increasing ß cell number via reprograming of α cells with a small molecule is enticing, as this could be a potential new pharmacologic therapy for diabetes. Here, we employed rigorous genetic lineage tracing of α cells, using Glucagon-CreERT2;Rosa-LSL-eYFP mice, to evaluate if activation of GABA signaling caused α-to-ß cell reprogramming. In contrast to previous reports, we found that even after long-term treatment of mice with artesunate or GABA, neither α-to-ß cell transdifferentiation nor insulin secretion were stimulated, putting into question whether these agents represent a viable path to a novel diabetes therapy.


Assuntos
Artesunato/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Artesunato/administração & dosagem , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Teste de Tolerância a Glucose , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/administração & dosagem
11.
J Clin Invest ; 128(6): 2297-2309, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29517978

RESUMO

Understanding the molecular basis of the regenerative response following hepatic injury holds promise for improved treatment of liver diseases. Here, we report an innovative method to profile gene expression specifically in the hepatocytes that regenerate the liver following toxic injury. We used the Fah-/- mouse, a model of hereditary tyrosinemia, which conditionally undergoes severe liver injury unless fumarylacetoacetate hydrolase (FAH) expression is reconstituted ectopically. We used translating ribosome affinity purification followed by high-throughput RNA sequencing (TRAP-seq) to isolate mRNAs specific to repopulating hepatocytes. We uncovered upstream regulators and important signaling pathways that are highly enriched in genes changed in regenerating hepatocytes. Specifically, we found that glutathione metabolism, particularly the gene Slc7a11 encoding the cystine/glutamate antiporter (xCT), is massively upregulated during liver regeneration. Furthermore, we show that Slc7a11 overexpression in hepatocytes enhances, and its suppression inhibits, repopulation following toxic injury. TRAP-seq allows cell type-specific expression profiling in repopulating hepatocytes and identified xCT, a factor that supports antioxidant responses during liver regeneration. xCT has potential as a therapeutic target for enhancing liver regeneration in response to liver injury.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática , Fígado , Tirosinemias/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Hepatócitos/patologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Tirosinemias/genética , Tirosinemias/patologia , Tirosinemias/fisiopatologia
12.
Physiol Rep ; 4(9)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27185905

RESUMO

The peptide uroguanylin (Ugn) is expressed at significant levels only in intestine and kidney, and is stored in both tissues primarily (perhaps exclusively) as intact prouroguanylin (proUgn). Intravascular infusion of either Ugn or proUgn evokes well-characterized natriuretic responses in rodents. Furthermore, Ugn knockout mice display hypertension and salt handling deficits, indicating that the Na(+) excretory mechanisms triggered when the peptides are infused into anesthetized animals are likely to operate under normal physiological conditions, and contribute to electrolyte homeostasis in conscious animals. Here, we provide strong corroborative evidence for this hypothesis, by demonstrating that UU gnV (the rate of urinary Ugn excretion) approximately doubled in conscious, unrestrained rats consuming a high-salt diet, and decreased by ~15% after salt restriction. These changes in UU gnV were not associated with altered plasma proUgn levels (shown here to be an accurate index of intestinal proUgn secretion). Furthermore, enteric Ugn mRNA levels were unaffected by salt intake, whereas renal Ugn mRNA levels increased sharply during periods of increased dietary salt consumption. Together, these data suggest that diet-evoked Ugn signals originate within the kidney, rather than the intestine, thus strengthening a growing body of evidence against a widely cited hypothesis that Ugn serves as the mediator of an entero-renal natriuretic signaling axis, while underscoring a likely intrarenal natriuretic role for the peptide. The data further suggest that intrarenal Ugn signaling is preferentially engaged when salt intake is elevated, and plays only a minor role when salt intake is restricted.


Assuntos
Mucosa Intestinal/metabolismo , Rim/metabolismo , Peptídeos Natriuréticos/biossíntese , Transdução de Sinais/fisiologia , Sódio na Dieta/administração & dosagem , Animais , Biomarcadores/sangue , Biomarcadores/urina , Regulação da Expressão Gênica , Intestinos/efeitos dos fármacos , Rim/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Natriuréticos/sangue , Peptídeos Natriuréticos/urina , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Hypertension ; 66(2): 374-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26034201

RESUMO

Reactive oxygen species regulate cardiovascular and renal function in health and disease. Superoxide participates in acute calcium signaling in afferent arterioles and renal vasoconstriction produced by angiotensin II, endothelin, thromboxane, and pressure-induced myogenic tone. Known mechanisms by which superoxide acts include quenching of nitric oxide and increased ADP ribosyl cyclase/ryanodine-mediated calcium mobilization. The effect(s) of superoxide on other calcium signaling pathways in the renal microcirculation is poorly understood. The present experiments examined the acute effect of superoxide generated by paraquat on calcium entry pathways in isolated rat afferent arterioles. The peak increase in cytosolic calcium concentration caused by KCl (40 mmol/L) was 99±14 nmol/L. The response to this membrane depolarization was mediated exclusively by L-type channels because it was abolished by nifedipine but was unaffected by the T-type channel blocker mibefradil. Paraquat increased superoxide production (dihydroethidium fluorescence), tripled the peak response to KCl to 314±68 nmol/L (P<0.001) and doubled the plateau response. These effects were abolished by tempol and nitroblue tetrazolium, but not by catalase, confirming actions of superoxide and not of hydrogen peroxide. Unaffected by paraquat and superoxide was calcium entry through store-operated calcium channels activated by thapsigargin-induced calcium depletion of sarcoplasmic reticular stores. Also unresponsive to paraquat was ryanodine receptor-mediated calcium-induced calcium release from the sarcoplasmic reticulum. Our results provide new evidence that superoxide enhances calcium entry through L-type channels activated by membrane depolarization in rat cortical afferent arterioles, without affecting calcium entry through store-operated entry or ryanodine receptor-mediated calcium mobilization.


Assuntos
Arteríolas/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Rim/irrigação sanguínea , Superóxidos/metabolismo , Animais , Arteríolas/citologia , Arteríolas/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Microcirculação/efeitos dos fármacos , Microcirculação/fisiologia , Modelos Animais , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Paraquat/farmacologia , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Retículo Sarcoplasmático/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
14.
Hypertension ; 53(5): 867-76, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19289652

RESUMO

The peptide uroguanylin regulates electrolyte transport in the intestine and kidney. Human uroguanylin has 2 conformations that can be stably isolated because of their slow interconversion rate. The A isomer potently activates the guanylate cyclase C receptor found primarily in the intestine. The B isomer, by contrast, is a very weak agonist of this receptor, leading to a widely held assumption that it is physiologically irrelevant. We show here, however, that human uroguanylin B has potent natriuretic activity in the kidney. Interestingly, uroguanylin A and B both induce saluretic responses, but the activity profiles for the 2 peptides differ markedly. The uroguanylin B dose-response curve is sigmoidal with a threshold dose of approximately 10 nmol/kg of body weight, whereas uroguanylin A has a comparable threshold but a bell-shaped dose-response curve. In addition, our study indicates a unique interplay between the A and B isoforms, such that the A form at high concentrations antagonizes the natriuretic action of the B form. These data show that the kidney contains a uroguanylin receptor of which the pharmacological profile does not match that of the well-defined intestinal uroguanylin receptor (guanylate cyclase C), an observation consistent with previous studies showing that the kidney of the guanylate cyclase C knockout mouse remains responsive to uroguanylin. The results presented here also support the unconventional notion that distinct conformations of a single endocrine peptide can elicit different responses in different tissues.


Assuntos
Peptídeos Natriuréticos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Taxa de Filtração Glomerular/efeitos dos fármacos , Guanilato Ciclase/fisiologia , Humanos , Masculino , Isoformas de Proteínas , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Sódio/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA