Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Reprod ; 37(1): 178-189, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34755185

RESUMO

STUDY QUESTION: Do bi-allelic variants in the genes encoding the MSH4/MSH5 heterodimer cause male infertility? SUMMARY ANSWER: We detected biallelic, (likely) pathogenic variants in MSH5 (4 men) and MSH4 (3 men) in six azoospermic men, demonstrating that genetic variants in these genes are a relevant cause of male infertility. WHAT IS KNOWN ALREADY: MSH4 and MSH5 form a heterodimer, which is required for prophase of meiosis I. One variant in MSH5 and two variants in MSH4 have been described as causal for premature ovarian insufficiency (POI) in a total of five women, resulting in infertility. Recently, pathogenic variants in MSH4 have been reported in infertile men. So far, no pathogenic variants in MSH5 had been described in males. STUDY DESIGN, SIZE, DURATION: We utilized exome data from 1305 men included in the Male Reproductive Genomics (MERGE) study, including 90 males with meiotic arrest (MeiA). Independently, exome sequencing was performed in a man with MeiA from a large consanguineous family. PARTICIPANTS/MATERIALS, SETTING, METHODS: Assuming an autosomal-recessive mode of inheritance, we screened the exome data for rare, biallelic coding variants in MSH4 and MSH5. If possible, segregation analysis in the patients' families was performed. The functional consequences of identified loss-of-function (LoF) variants in MSH5 were studied using heterologous expression of the MSH5 protein in HEK293T cells. The point of arrest during meiosis was determined by γH2AX staining. MAIN RESULTS AND THE ROLE OF CHANCE: We report for the first time (likely) pathogenic, homozygous variants in MSH5 causing infertility in 2 out of 90 men with MeiA and overall in 4 out of 902 azoospermic men. Additionally, we detected biallelic variants in MSH4 in two men with MeiA and in the sister of one proband with POI. γH2AX staining revealed an arrest in early prophase of meiosis I in individuals with pathogenic MSH4 or MSH5 variants. Heterologous in vitro expression of the detected LoF variants in MSH5 showed that the variant p.(Ala620GlnTer9) resulted in MSH5 protein truncation and the variant p.(Ser26GlnfsTer42) resulted in a complete loss of MSH5. LARGE SCALE DATA: All variants have been submitted to ClinVar (SCV001468891-SCV001468896 and SCV001591030) and can also be accessed in the Male Fertility Gene Atlas (MFGA). LIMITATIONS, REASONS FOR CAUTION: By selecting for variants in MSH4 and MSH5, we were able to determine the cause of infertility in six men and one woman, leaving most of the examined individuals without a causal diagnosis. WIDER IMPLICATIONS OF THE FINDINGS: Our findings have diagnostic value by increasing the number of genes associated with non-obstructive azoospermia with high clinical validity. The analysis of such genes has prognostic consequences for assessing whether men with azoospermia would benefit from a testicular biopsy. We also provide further evidence that MeiA in men and POI in women share the same genetic causes. STUDY FUNDING/COMPETING INTEREST(S): This study was carried out within the frame of the German Research Foundation sponsored Clinical Research Unit 'Male Germ Cells: from Genes to Function' (DFG, CRU326), and supported by institutional funding of the Research Institute Amsterdam Reproduction and Development and funds from the LucaBella Foundation. The authors declare no conflict of interest.


Assuntos
Azoospermia , Infertilidade Masculina , Azoospermia/genética , Proteínas de Ciclo Celular/genética , Reparo de Erro de Pareamento de DNA , Feminino , Células HEK293 , Humanos , Infertilidade Masculina/genética , Masculino , Meiose/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética
2.
Clin Genet ; 85(5): 433-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23701270

RESUMO

Apolipoprotein C3 (APOC3) mutations carriers typically display high plasma high-density lipoprotein cholesterol (HDL-C) and low triglycerides (TGs). We set out to investigate the prevalence and clinical consequences of APOC3 mutations in individuals with hyperalphalipoproteinemia. Two novel mutations (c.-13-2A>G and c.55+1G>A) and one known mutation (c.127G>A;p.Ala43Thr) were found. Lipid profiles and apoCIII isoform distributions were measured. c.55+1G>A mutation carriers displayed higher HDL-C percentiles (35.6 ± 35.8 vs 99.0 ± 0, p = 0.002) and lower TGs (0.51 (0.37-0.61) vs 1.42 (1.12-1.81) mmol/l, p = 0.007) and apoCIII levels (4.24 ± 1.57 vs 7.33 ± 3.61 mg/dl, p = 0.18). c.-13-2A>G mutation carriers did not display significantly different HDL-C levels (84.0 ± 30.0 vs 63.7 ± 45.7, p = 0.50), a trend towards lower TGs [0.71 (0.54 to 0.78) vs 0.85 (0.85 to -) mmol/l, p = 0.06] and significantly lower apoCIII levels (3.09 ± 1.08 vs 11.45 ± 1.06 mg/dl, p = 0.003). p.Ala43Thr mutation carriers displayed a trend towards higher HDL-C percentiles (91.2 ± 31.8 vs 41.0 ± 29.7 mmol/l, p = 0.06) and significantly lower TGs [0.58 (0.36-0.63) vs 0.95 (0.71-1.20) mmol/l, p = 0.02] and apoCIII levels (4.92 ± 2.33 vs 6.60 ± 1.60, p = 0.25). Heterozygosity for APOC3 mutations results in high HDL-C and low TGs and apoCIII levels. This favourable lipid profile in patients with genetically low apoCIII levels holds promise for current studies investigating the potential of apoCIII inhibition as a novel therapeutic in cardiovascular disease prevention.


Assuntos
Apolipoproteína C-III/genética , Doenças Cardiovasculares/genética , HDL-Colesterol/genética , Triglicerídeos/genética , Alelos , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/patologia , HDL-Colesterol/sangue , Genótipo , Heterozigoto , Humanos , Metabolismo dos Lipídeos , Mutação , Triglicerídeos/sangue
3.
Curr Atheroscler Rep ; 13(3): 225-32, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21369780

RESUMO

Cardiovascular disease remains the major cause of worldwide morbidity and mortality. Its pathophysiology is complex and multifactorial. Because the phenotype of cardiovascular disease often shows a marked heritable pattern, it is likely that genetic factors play an important role. In recent years, large genome-wide association studies have been conducted to decipher the molecular mechanisms underlying this heritable and prevalent phenotype. The emphasis of this review is on the recently identified 17 susceptibility loci for coronary artery disease. Implications of their discovery for biology and clinical medicine are discussed. A description of the landscape of human genetics in the near future in the context of next-generation sequence technologies is provided at the conclusion of this review.


Assuntos
Sequência de Bases , Doença da Artéria Coronariana/genética , Loci Gênicos , Predisposição Genética para Doença , Doença da Artéria Coronariana/metabolismo , Expressão Gênica , Estudo de Associação Genômica Ampla , Homeostase/genética , Humanos , Metabolismo dos Lipídeos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Sci Rep ; 5: 17259, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26616161

RESUMO

The affinity of zeolite nanoparticles (diameter of 8-12 nm) possessing high surface area and high pore volume towards human plasma proteins has been investigated. The protein composition (corona) of zeolite nanoparticles has been shown to be more dependent on the plasma protein concentrations and the type of zeolites than zeolite nanoparticles concentration. The number of proteins present in the corona of zeolite nanoparticles at 100% plasma (in vivo state) is less than with 10% plasma exposure. This could be due to a competition between the proteins to occupy the corona of the zeolite nanoparticles. Moreover, a high selective adsorption for apolipoprotein C-III (APOC-III) and fibrinogen on the zeolite nanoparticles at high plasma concentration (100%) was observed. While the zeolite nanoparticles exposed to low plasma concentration (10%) exhibited a high selective adsorption for immunoglobulin gamma (i.e. IGHG1, IGHG2 and IGHG4) proteins. The zeolite nanoparticles can potentially be used for selectively capture of APOC-III in order to reduce the activation of lipoprotein lipase inhibition during hypertriglyceridemia treatment. The zeolite nanoparticles can be adapted to hemophilic patients (hemophilia A (F-VIII deficient) and hemophilia B (F-IX deficient)) with a risk of bleeding, and thus might be potentially used in combination with the existing therapy.


Assuntos
Proteínas Sanguíneas , Nanopartículas , Zeolitas , Adsorção , Apolipoproteína C-III/química , Coagulação Sanguínea , Proteínas Sanguíneas/química , Cromatografia Líquida , Fibrinogênio/química , Humanos , Nanopartículas/química , Nanopartículas/ultraestrutura , Nitrogênio/química , Coroa de Proteína , Espectrometria de Massas em Tandem , Zeolitas/química
5.
Thromb Haemost ; 111(3): 518-30, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24500811

RESUMO

Apart from transporting lipids through the body, the human plasma lipoproteins very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) are also thought to serve as a modality for intra-organismal protein transfer, shipping proteins with important roles in inflammation and thrombosis from the site of synthesis to effector locations. To better understand the role of VLDL and LDL in the transport of proteins, we applied a combination of LTQ ORBITRAP-XL (nLC-MS/MS) with both in-SDS-PAGE gel and in-solution tryptic digestion of pure and defined VLDL and LDL fractions. We identified the presence of 95 VLDL- and 51 LDL-associated proteins including all known apolipoproteins and lipid transport proteins, and intriguingly a set of coagulation proteins, complement system and anti- microbial proteins. Prothrombin, protein S, fibrinogen γ, PLTP, CETP, CD14 and LBP were present on VLDL but not on LDL. Prenylcysteine oxidase 1, dermcidin, cathelicidin antimicrobial peptide, TFPI-1 and fibrinogen α chain were associated with both VLDL and LDL. Apo A-V is only present on VLDL and not on LDL. Collectively, this study provides a wealth of knowledge on the protein constituents of the human plasma lipoprotein system and strongly supports the notion that protein shuttling through this system is involved in the regulation of biological processes. Human diseases related to proteins carried by VLDL and LDL can be divided in three major categories: 1 - dyslipidaemia, 2 - atherosclerosis and vascular disease, and 3 - coagulation disorders.


Assuntos
Aterosclerose/sangue , Transtornos da Coagulação Sanguínea/sangue , Dislipidemias/sangue , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Plasma/metabolismo , Proteoma/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Apolipoproteína A-V , Apolipoproteínas A/metabolismo , Coagulação Sanguínea , Liases de Carbono-Enxofre/metabolismo , Catepsina D/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Biologia Computacional , Humanos , Metabolismo dos Lipídeos , Receptores de Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Espectrometria de Massas , Muramidase/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteína S/metabolismo , Protrombina/metabolismo
7.
Sci Rep ; 3: 2173, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23838847

RESUMO

Adipocytes hypertrophy is the main cause of obesity and its affliction such as type 2 diabetes (T2D). Since superparamagnetic iron oxide nanoparticles (SPIONs) are used for a wide range of biomedical/medical applications, we aimed to study the effect of SPIONs on 22 and 29 risk genes (Based on gene wide association studies) for obesity and T2D in human adipocytes. The mRNA expression of lipid and glucose metabolism genes was changed upon the treatment of human primary adipocytes with SPIONs. mRNA of GULP1, SLC30A8, NEGR1, SEC16B, MTCH2, MAF, MC4R, and TMEM195 were severely induced, whereas INSIG2, NAMPT, MTMR9, PFKP, KCTD15, LPL and GNPDA2 were down-regulated upon SPIONs stimulation. Since SEC16B gene assist the phagocytosis of apoptotic cells and this gene were highly expressed upon SPIONs treatment in adipocytes, it is logic to assume that SPIONs may play a crucial role in this direction, which requires more consideration in the future.


Assuntos
Adipócitos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/genética , Compostos Férricos/farmacologia , Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Magnetismo , Obesidade/genética , Adipócitos/metabolismo , Compostos Férricos/química , Humanos , Microscopia Eletrônica de Transmissão
8.
Atherosclerosis ; 213(2): 492-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20880529

RESUMO

OBJECTIVES: The current literature provides little information on the frequency of mutations in the ATP-binding cassette transporter A1 (ABCA1) in patients with low high-density lipoprotein cholesterol (HDL) levels that are referred to the clinic. In 78 patients with low plasma levels of HDL cholesterol that were referred to our clinic, we routinely screened for ABCA1 gene mutations and studied the functionality of newly identified ABCA1 missense mutations. METHODS: The coding regions and exon-intron boundaries of the ABCA1 gene were sequenced in 78 subjects with HDL cholesterol levels below the 10th percentile for age and gender. Novel mutations were studied by assessing cholesterol efflux capacity (using apolipoprotein A-I as acceptor) after transient expression of ABCA1 variants in BHK cells. RESULTS: Sixteen out of 78 patients (21%) were found to carry 19 different ABCA1 gene variants (1 frameshift, 2 splice-site, 4 nonsense and 12 missense variation) of which 14 variations were novel. Of three patients with homozygous mutations and three patients having compound heterozygous mutations only one patient presented with the clinical characteristics of Tangier Disease (TD) in the presence of nearly complete HDL deficiency. Seven out of eight newly identified ABCA1 missense mutations were found to exhibit a statistically significant loss of cholesterol efflux capacity. CONCLUSION: This study shows that one out of five patients who are referred to our hospital because of low HDL cholesterol levels have a functional ABCA1 gene mutation. It is furthermore demonstrated that in vitro studies are needed to assess functionality of ABCA1 missense mutations.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , HDL-Colesterol/sangue , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Cricetinae , Humanos , Mutação de Sentido Incorreto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA