Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(15): 2810-2828.e6, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541219

RESUMO

DNA damage-activated signaling pathways are critical for coordinating multiple cellular processes, which must be tightly regulated to maintain genome stability. To provide a comprehensive and unbiased perspective of DNA damage response (DDR) signaling pathways, we performed 30 fluorescence-activated cell sorting (FACS)-based genome-wide CRISPR screens in human cell lines with antibodies recognizing distinct endogenous DNA damage signaling proteins to identify critical regulators involved in DDR. We discovered that proteasome-mediated processing is an early and prerequisite event for cells to trigger camptothecin- and etoposide-induced DDR signaling. Furthermore, we identified PRMT1 and PRMT5 as modulators that regulate ATM protein level. Moreover, we discovered that GNB1L is a key regulator of DDR signaling via its role as a co-chaperone specifically regulating PIKK proteins. Collectively, these screens offer a rich resource for further investigation of DDR, which may provide insight into strategies of targeting these DDR pathways to improve therapeutic outcomes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Dano ao DNA , Humanos , Citometria de Fluxo , Transdução de Sinais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Genoma , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética
2.
Physiol Plant ; 176(3): e14317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686568

RESUMO

The cotton rose (Hibiscus mutabilis) is a plant species commonly found in tropical and subtropical regions. It is remarkably resilient to waterlogging stress; however, the underlying mechanism behind this trait is yet unknown. This study used hypoxia-tolerant "Danbanhong" (DBH) and more hypoxia-sensitive "Yurui" (YR) genotypes and compared their morpho-physiological and transcriptional responses to hypoxic conditions. Notably, DBH had a higher number of adventitious roots (20.3) compared to YR (10.0), with longer adventitious roots in DBH (18.3 cm) than in YR (11.2 cm). Furthermore, the formation of aerenchyma was 3-fold greater in DBH compared to YR. Transcriptomic analysis revealed that DBH had more rapid transcriptional responses to hypoxia than YR. Identification of a greater number of differentially expressed genes (DEGs) for aerenchyma, adventitious root formation and development, and energy metabolism in DBH supported that DBH had better morphological and transcriptional adaptation than YR. DEG functional enrichment analysis indicated the involvement of variety-specific biological processes in adaption to hypoxia. Plant hormone signaling transduction, MAPK signaling pathway and carbon metabolism played more pronounced roles in DBH, whereas the ribosome genes were specifically induced in YR. These results show that effective multilevel coordination of adventitious root development and aerenchyma, in conjunction with plant hormone signaling and carbon metabolism, is required for increased hypoxia tolerance. This study provides new insights into the characterization of morpho-physiological and transcriptional responses to hypoxia in H. mutabilis, shedding light on the molecular mechanisms of its adaptation to hypoxic environments.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Transcriptoma/genética , Adaptação Fisiológica/genética , Genótipo , Reguladores de Crescimento de Plantas/metabolismo , Estresse Fisiológico/genética
3.
Methods ; 202: 70-77, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33992772

RESUMO

With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.


Assuntos
Aprendizado Profundo , Pneumopatias , Humanos , Pulmão , Pneumopatias/diagnóstico por imagem , Redes Neurais de Computação , Padrões de Referência
4.
J Gastroenterol Hepatol ; 38(5): 809-820, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36894323

RESUMO

BACKGROUND: We aimed to develop an autophagy-related prognostic model with single-cell RNA sequencing (ScRNA-Seq) data for hepatocellular carcinoma (HCC) patients. METHODS: ScRNA-Seq datasets of HCC patients were analyzed by Seurat. The expression of genes involved in canonical and noncanonical autophagy pathways in scRNA-seq data was also compared. Cox regression was applied to construct an AutRG risk prediction model. Subsequently, we examined the characteristics of AutRG high-risk and low-risk group patients. RESULTS: Six major cell types (hepatocytes, myeloid cells, T/NK cells, B cells, fibroblast cells, and endothelial cells) were identified in the scRNA-Seq dataset. The results showed that most of the canonical and noncanonical autophagy genes were highly expressed in hepatocytes, with the exception of MAP 1LC3B, SQSTM1, MAP 1LC3A, CYBB, and ATG3. Six AutRG risk prediction models originating from different cell types were constructed and compared. The AutRG prognostic signature (GAPDH, HSP90AA1, and TUBA1C) in endothelial cells had the best overall performance for predicting the overall survival of HCC patients, with 1-year, 3-year, and 5-year AUCs equal to 0.758, 0.68, and 0.651 in the training cohort and 0.760, 0.796, and 0.840 in the validation cohort, respectively. The different tumor mutation burden, immune infiltration, and gene set enrichment characteristics of the AutRG high-risk and low-risk group patients were identified. CONCLUSION: We constructed an endothelial cell-related and autophagy-related prognostic model of HCC patients using the ScRNA-Seq dataset for the first time. This model demonstrated the good calibration ability of HCC patients and provided a new understanding of the evaluation of prognosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Células Endoteliais , Prognóstico , Neoplasias Hepáticas/genética , Autofagia/genética
5.
Xenotransplantation ; 28(3): e12678, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33569837

RESUMO

Islet transplantation is poised to play an important role in the treatment of type 1 diabetes mellitus (T1DM). However, there are several challenges limiting its widespread use, including the instant blood-mediated inflammatory reaction, hypoxic/ischemic injury, and the immune response. Mesenchymal stem/stromal cells (MSCs) are known to exert regenerative, immunoregulatory, angiogenic, and metabolic properties. Here, we review recent reports on the application of MSCs in islet allo- and xenotransplantation. We also document the clinical trials that have been undertaken or are currently underway, relating to the co-transplantation of islets and MSCs. Increasing evidence indicates that co-transplantation of MSCs prolongs islet graft survival by locally secreted protective factors that reduce immune reactivity and promote vascularization, cell survival, and regeneration. MSC therapy may be a promising option for islet transplantation in patients with T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Diabetes Mellitus Tipo 1/cirurgia , Humanos , Transplante Heterólogo
6.
Xenotransplantation ; 27(6): e12640, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32892428

RESUMO

The transplanted organs or cells survive if the recipient receives adequate long-term immunosuppressive therapy. Immunosuppressive therapy combined with cell-based strategies (eg, regulatory T cell [Treg]-based therapy) promotes graft survival. A combination of Treg-based therapy and minimal or no immunosuppressive drug therapy would have the potential to minimize the risks of the complications and side effects of these drugs. Fortunately, some immunosuppressive and other agents not only impede the effector T cell response, but also help generate new CD4+ Tregs from conventional effector T cells. These agents include IL-2, TGF-ß, agents that block the CD40/CD40L costimulation pathway, mTOR inhibitors, and histone deacetylase inhibitors. Consequently, a state of relative unresponsiveness to the transplanted organ may be induced through the expansion of Tregs. We here review the effect of these various agents on expansion of CD4+ Tregs in allo- and xenotransplantation. The expansion of Tregs might allow a dose reduction of the standard immunosuppressive drugs.


Assuntos
Sobrevivência de Enxerto , Imunossupressores , Linfócitos T Reguladores , Transplante Heterólogo , Animais , Xenoenxertos , Humanos , Imunossupressores/farmacologia , Linfócitos T Reguladores/imunologia
7.
J Bone Miner Metab ; 38(3): 277-288, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31760502

RESUMO

INTRODUCTION: Currently, osteoarthritis (OA) receives global increasing attention because it associates severe joint pain and serious disability. Stem cells intra-articular injection therapy showed a potential therapeutic superiority to reduce OA development and to improve treating outputs. However, the long-term effect of stem cells intra-articular injection on the cartilage regeneration remains unclear. Recently, miR-140-5p was confirmed as a critical positive regulator in chondrogenesis. We hypothesized that hUC-MSCs overexpressing miR-140-5p have better therapeutic effect on osteoarthritis. MATERIALS AND METHODS: To enhance stem cell chondrogenic differentiation, we have transfected human umbilical cord mesenchymal stem cells (hUC-MSCs) with miR-140-5p mimics and miR-140-5p lentivirus to overexpress miR-140-5p in a short term or a long term accordingly. Thereafter, MSCs proliferation, chondrogenic genes expression and extracellular matrix were assessed. Destabilization of the medial meniscus (DMM) surgery was performed on the knee joints of SD rats as an OA model, and then intra-articular injection of hUC-MSCs or hUC-MSCs transfected with miR-140-5p lentivirus was carried to evaluate the cartilage healing effect with histological staining and OARSI scores. The localization of hUC-MSCs after intra-articular injection was further confirmed by immunohistochemical staining. RESULTS: Significant induction of chondrogenic differentiation in the miR-140-5p-hUC-MSCs (140-MSCs), while its proliferation was not influenced. Interestingly, intra-articular injection of 140-MSCs significantly enhanced articular cartilage self-repairing in comparison to normal hUC-MSCs. Moreover, we noticed that intra-articular injection of high 140-MSCs numbers reinforces cells assembling on the impaired cartilage surface and subsequently differentiated into chondrocytes. CONCLUSIONS: In conclusion, these results indicate therapeutic superiority of hUC-MSCs overexpressing miR-140-5p to treat OA using intra-articular injection.


Assuntos
Cartilagem Articular/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , MicroRNAs/metabolismo , Osteoartrite/terapia , Regeneração , Cordão Umbilical/citologia , Animais , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Condrócitos/citologia , Condrogênese , Modelos Animais de Doenças , Humanos , Injeções Intra-Articulares , Lentivirus/metabolismo , Masculino , Osteoartrite/genética , Ratos Sprague-Dawley
8.
Ophthalmic Res ; 63(3): 224-233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31962334

RESUMO

Controversial results regarding the associations between aldose reductase (AR) genetic polymorphisms and diabetic retinopathy (DR) have been reported for many years. The present meta-analysis was performed to clarify the effects of the AR gene C(-106)T polymorphism on DR risk. The PubMed, Web of Sciences, Cochrane library, EMBASE, Chinese National Knowledge Infrastructure, and Wan Fang databases were extensively searched in Chinese to select relevant studies with an updated date of April 25, 2018. The Newcastle-Ottawa Scale (NOS) was applied to assess quality. The random-effects model was applied to calculate the pooled OR and 95% CI. This meta-analysis identified 23 studies with an average score of 7.52 for NOS analysis, including 4,313 DR cases and 5,128 diabetes mellitus (DM) control cases. In the overall analysis, a significant association between the AR gene C(-106)T polymorphism and DR susceptibility was found. In subgroups stratified by DM type and ethnicity, significantly increased risks for DR were found in DM type 1, East Asian populations, and Middle Eastern populations. Compared with DR control cases, the following associations were found: T vs. C: OR 0.91, 95% CI 0.85-0.97, I2 = 72.9%; CT + TT vs. CC: OR 0.75, 95% CI 0.68-0.81, I2 = 86.7%; and CT vs. CC: OR 0.86, 95% CI 0.78-0.94, I2 = 70.5%. The results of this meta-analysis showed a significant association between the AR gene C(-106)T polymorphism and susceptibility to DR in DM patients. DM patients with allele T and CT+TT genotype of the AR gene may have a lower risk of DR.


Assuntos
Aldeído Redutase/genética , DNA/genética , Retinopatia Diabética/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Aldeído Redutase/metabolismo , Alelos , Retinopatia Diabética/metabolismo , Frequência do Gene , Genótipo , Humanos , Fatores de Risco
9.
Cell Commun Signal ; 17(1): 75, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307477

RESUMO

BACKGROUND: The major limitation of organ transplantation is the shortage of available organs. Xenotransplantation is considered to be an effective way to resolve the problem. Immune rejection is a major hurdle for the successful survival of pig xenografts in primate recipients. Cytokines play important roles in inflammation and many diseases including allotransplantation, however, their roles in xenotransplantation have been less well investigated. METHODS: We assessed the role of several cytokines in xenotransplantation using an in vitro model of human antibody-mediated complement-dependent cytotoxicity (CDC). Porcine aortic endothelial cells (PAECs) and porcine iliac endothelial cells (PIECs) were selected as target cells. The complement regulators (CD46, CD55 and CD59) and junction protein genes were assessed by real-time PCR, flow cytometry, or western-blotting assay. Flow cytometry assay was also used to evaluate C3 and C5b-9 deposition, as well as the extent of human IgM and IgG binding to PIECs. Gene silencing was used to reduce genes expression in PIECs. Gene overexpression was mediated by adenovirus or retrovirus. RESULTS: Recombinant human TNF-α increased the cytotoxicity of PAECs and PIECs in a human antibody-mediated CDC model. Unexpectedly, we found that the expression of complement regulators (CD46, CD55 and CD59) increased in PIECs exposed to human TNF-α. Human TNF-α did not modify C3 or C5b-9 deposition on PIECs. The extent of human IgM and IgG binding to PIECs was not affected by human TNF-α. Human TNF-α decreased the expression of Occludin in PIECs. Gene silencing and overexpression assay suggested that Occludin was required for human TNF-α-mediated cytotoxicity of PIECs in this model. P38 gene silencing or inhibition of P38 signaling pathway with a specific inhibitor, SB203580, inhibited the reduction of Occludin expression induced by TNF-α, and suppressed TNF-α-augmented cytotoxicity of PIECs. CONCLUSION: Our data suggest that human TNF-α increases the cytotoxicity of porcine endothelial cells in a human antibody-mediated CDC model by downregulating P38-dependent Occludin expression. Pharmacologic blockade of TNF-α is likely to increase xenograft survival in pig-to-primate organ xenotransplantation.


Assuntos
Anticorpos/imunologia , Proteínas do Sistema Complemento/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ocludina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Endoteliais/citologia , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Suínos , Transplante Heterólogo/efeitos adversos
10.
Xenotransplantation ; 26(5): e12526, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31127671

RESUMO

BACKGROUND: Porcine vascular endothelial cells are a major participant in xenograft rejection. The Toll-like receptor 2 (TLR2) pathway plays an important role in both innate and adaptive immunity. The specific role of TLR2 in the response to a xenograft has not been reported. Whether the TLR2 pathway in pig vascular endothelial cells is involved in acute rejection needs to be investigated, and the mechanism is explored. METHODS: We used a modified antibody-dependent complement-mediated cytotoxicity (ADCC) assay to conduct in vitro experiments. In porcine iliac artery endothelial cells (PIECs), siRNA was used to knock down the expression of TLR2, CXCL8, and CCL2. The effect of human serum or inactivated human serum on the expression of TLR2 was analyzed by real-time PCR and Western blotting, and transwell assays were used to assess the chemotactic efficiency of PIECs on human monocyte-macrophages (THP-1 cells) and human neutrophils. The downstream signaling pathways activated by human serum were detected by Western blotting, and the regulation of proinflammatory chemokines and cytokines by TLR2 signaling was assessed by real-time PCR and ELISA. RESULTS: TLR2 was significantly upregulated in PIECs after exposure to human serum, and porcine proinflammatory chemokines, CXCL8 and CCL2, were induced, at least partially, in a TLR2-dependent pattern; the upregulated chemokines participated in the chemotaxis of human neutrophils and THP-1 cells across the species barrier. CONCLUSIONS: (i) TLR2 is significantly upregulated in PIECs by human serum, (ii) the elevated TLR2 participates in the chemotaxis of inflammatory cells through the secretion of chemokine CCL2 and CXCL8, and (iii) blockade of TLR2 would be beneficial for xenograft survival.


Assuntos
Células Endoteliais/imunologia , Rejeição de Enxerto/imunologia , Artéria Ilíaca/imunologia , Receptor 2 Toll-Like/imunologia , Transplante Heterólogo , Animais , Biomarcadores/metabolismo , Western Blotting , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Artéria Ilíaca/metabolismo , Técnicas In Vitro , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA