Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23291, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095283

RESUMO

Myocardial infarction (MI) is characterized by a significant loss of cardiomyocytes (CMs), and it is suggested that reactive oxygen species (ROS) are involved in cell cycle arrest, leading to impaired CM renewal. Thioredoxin-1 (Trx-1) scavenges ROS and may play a role in restoring CM renewal. However, the truncated form of Trx-1, Trx-80, can compromise its efficacy by exerting antagonistic effects. Therefore, a Trx-1 mimetic peptide called CB3 was tested as an alternative way to restore CMs. This study aimed to investigate the effects of Trx-1, Trx-80, and CB3 on mice with experimental MI and study the underlying mechanism of CB3 on CMs. Mouse cardiac parameters were quantified by echocardiography, and infarction size and fibrosis determined using Trichrome and Picro-Sirius Red staining. The study found that Trx-1 and CB3 improved mouse cardiac function, reduced the size of cardiac infarct and fibrosis, and decreased the expression of cardiac inflammatory markers. Furthermore, CB3 polarized macrophages into M2 phenotype, reduced apoptosis and oxidative stress after MI, and increased CM proliferation in cell culture and in vivo. CB3 effectively protected against myocardial infarction and could represent a new class of compounds for treating MI.


Assuntos
Infarto do Miocárdio , Tiorredoxinas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/metabolismo , Apoptose , Fibrose , Remodelação Ventricular , Miocárdio/metabolismo , Modelos Animais de Doenças
2.
Brain ; 147(11): 3834-3848, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-38584513

RESUMO

Sarcopenia involves a progressive loss of skeletal muscle force, quality and mass during ageing, which results in increased inability and death; however, no cure has been established thus far. Growth differentiation factor 5 (GDF5) has been described to modulate muscle mass maintenance in various contexts. For our proof of concept, we overexpressed GDF5 by AAV vector injection in tibialis anterior muscle of adult aged (20 months) mice and performed molecular and functional analysis of skeletal muscle. We analysed human vastus lateralis muscle biopsies from adult young (21-42 years) and aged (77-80 years) donors, quantifying the molecular markers modified by GDF5 overexpression in mouse muscle. We validated the major effects of GDF5 overexpression using human immortalized myotubes and Schwann cells. We established a preclinical study by treating chronically (for 4 months) aged mice using recombinant GDF5 protein (rGDF5) in systemic administration and evaluated the long-term effect of this treatment on muscle mass and function. Here, we demonstrated that GDF5 overexpression in the old tibialis anterior muscle promoted an increase of 16.5% of muscle weight (P = 0.0471) associated with a higher percentage of 5000-6000 µm2 large fibres (P = 0.0211), without the induction of muscle regeneration. Muscle mass gain was associated with an amelioration of 26.8% of rate of force generation (P = 0.0330) and better neuromuscular connectivity (P = 0.0098). Moreover, GDF5 overexpression preserved neuromuscular junction morphology (38.5% of nerve terminal area increase, P < 0.0001) and stimulated the expression of reinnervation-related genes, in particular markers of Schwann cells (fold-change 3.19 for S100b gene expression, P = 0.0101). To characterize the molecular events induced by GDF5 overexpression during ageing, we performed a genome-wide transcriptomic analysis of treated muscles and showed that this factor leads to a 'rejuvenating' transcriptomic signature in aged mice, as 42% of the transcripts dysregulated by ageing reverted to youthful expression levels upon GDF5 overexpression (P < 0.05). Towards a preclinical approach, we performed a long-term systemic treatment using rGDF5 and showed its effectiveness in counteracting age-related muscle wasting, improving muscle function (17.8% of absolute maximal force increase, P = 0.0079), ensuring neuromuscular connectivity and preventing neuromuscular junction degeneration (7.96% of AchR area increase, P = 0.0125). In addition, in human muscle biopsies, we found the same age-related alterations than those observed in mice and improved by GDF5 and reproduced its major effects on human cells, suggesting this treatment as efficient in humans. Overall, these data provide a foundation to examine the curative potential of GDF5 drug in clinical trials for sarcopenia and, eventually, other neuromuscular diseases.


Assuntos
Fator 5 de Diferenciação de Crescimento , Músculo Esquelético , Animais , Fator 5 de Diferenciação de Crescimento/genética , Humanos , Camundongos , Idoso , Adulto , Idoso de 80 Anos ou mais , Adulto Jovem , Músculo Esquelético/metabolismo , Masculino , Envelhecimento/fisiologia , Feminino , Sarcopenia/metabolismo , Células de Schwann/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Rejuvenescimento/fisiologia , Camundongos Endogâmicos C57BL , Doenças Neuromusculares/genética , Doenças Neuromusculares/terapia , Junção Neuromuscular/metabolismo
3.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39273430

RESUMO

Recent epidemiological studies have shown that patients with right-sided breast cancer (RBC) treated with X-ray irradiation (IR) are more susceptible to developing cardiovascular diseases, such as arrhythmias, atrial fibrillation, and conduction disturbances after radiotherapy (RT). Our aim was to investigate the mechanisms induced by low to moderate doses of IR and to evaluate changes in the cardiac sympathetic nervous system (CSNS), atrial remodeling, and calcium homeostasis involved in cardiac rhythm. To mimic the RT of the RBC, female C57Bl/6J mice were exposed to X-ray doses ranging from 0.25 to 2 Gy targeting 40% of the top of the heart. At 60 weeks after RI, Doppler ultrasound showed a significant reduction in myocardial strain, ejection fraction, and atrial function, with a significant accumulation of fibrosis in the epicardial layer and apoptosis at 0.5 mGy. Calcium transient protein expression levels, such as RYR2, NAK, Kir2.1, and SERCA2a, increased in the atrium only at 0.5 Gy and 2 Gy at 24 h, and persisted over time. Interestingly, 3D imaging of the cleaned hearts showed an early reduction of CSNS spines and dendrites in the ventricles and a late reorientation of nerve fibers, combined with a decrease in SEMA3a expression levels. Our results showed that local heart IR from 0.25 Gy induced late cardiac and atrial dysfunction and fibrosis development. After IR, ventricular CSNS and calcium transient protein expression levels were rearranged, which affected cardiac contractility. The results are very promising in terms of identifying pro-arrhythmic mechanisms and preventing arrhythmias during RT treatment in patients with RBC.


Assuntos
Cálcio , Camundongos Endogâmicos C57BL , Sistema Nervoso Simpático , Animais , Camundongos , Sistema Nervoso Simpático/efeitos da radiação , Sistema Nervoso Simpático/metabolismo , Feminino , Cálcio/metabolismo , Raios X , Coração/efeitos da radiação , Coração/fisiopatologia , Remodelamento Atrial/efeitos da radiação
4.
Am J Physiol Lung Cell Mol Physiol ; 324(5): L609-L624, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852942

RESUMO

Hereditary pulmonary veno-occlusive disease (hPVOD) is a severe form of autosomal recessive pulmonary hypertension and is due to biallelic loss of function of the EIF2AK4 gene (alias GCN2) coding for GCN2. GCN2 is a stress kinase that belongs to the integrated stress response pathway (ISR). Three rat lines carrying biallelic Gcn2 mutation were generated and found phenotypically normal and did not spontaneously develop a PVOD-related disease. We submitted these rats to amino acid deprivation to document the molecular and cellular response of the lungs and to identify phenotypic changes that could be involved in PVOD pathophysiology. Gcn2-/- rat lungs were analyzed under basal conditions and 3 days after a single administration of PEG-asparaginase (ASNase). Lung mRNAs were analyzed by RNAseq and single-cell RNAseq (scRNA-seq), flow cytometry, tissue imaging, and Western blots. The ISR was not activated after ASNase treatment in Gcn2-/- rat lungs, and apoptosis was increased. Several proinflammatory and innate immunity genes were overexpressed, and inflammatory cells infiltration was also observed in the perivascular area. Under basal conditions, scRNA-seq analysis of Gcn2-/- rat lungs revealed increases in two T-cell populations, a LAG3+ T-cell population and a proliferative T-cell population. Following ASNase administration, we observed an increase in calprotectin expression involved in TLR pathway activation and neutrophil infiltration. In conclusion, under basal and asparagine and glutamine deprivation induced by asparaginase administration, Gcn2-/- rats display molecular and cellular signatures in the lungs that may indicate a role for Gcn2 in immune homeostasis and provide further clues to the mechanisms of hPVOD development.


Assuntos
Hipertensão Pulmonar , Pneumopatia Veno-Oclusiva , Animais , Ratos , Pulmão/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pneumopatia Veno-Oclusiva/genética , RNA Mensageiro
5.
Circ Res ; 126(10): 1330-1342, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32175811

RESUMO

RATIONALE: Fibro-fatty infiltration of subepicardial layers of the atrial wall has been shown to contribute to the substrate of atrial fibrillation. OBJECTIVE: Here, we examined if the epicardium that contains multipotent cells is involved in this remodeling process. METHODS AND RESULTS: One hundred nine human surgical right atrial specimens were evaluated. There was a relatively greater extent of epicardial thickening and dense fibro-fatty infiltrates in atrial tissue sections from patients aged over 70 years who had mitral valve disease or atrial fibrillation when compared with patients aged less than 70 years with ischemic cardiomyopathy as indicated using logistic regression adjusted for age and gender. Cells coexpressing markers of epicardial progenitors and fibroblasts were detected in fibro-fatty infiltrates. Such epicardial remodeling was reproduced in an experimental model of atrial cardiomyopathy in rat and in Wilms tumor 1 (WT1)CreERT2/+;ROSA-tdT+/- mice. In the latter, genetic lineage tracing demonstrated the epicardial origin of fibroblasts within fibro-fatty infiltrates. A subpopulation of human adult epicardial-derived cells expressing PDGFR (platelet-derived growth factor receptor)-α were isolated and differentiated into myofibroblasts in the presence of Ang II (angiotensin II). Furthermore, single-cell RNA-sequencing analysis identified several clusters of adult epicardial-derived cells and revealed their specification from adipogenic to fibrogenic cells in the rat model of atrial cardiomyopathy. CONCLUSIONS: Epicardium is reactivated during the formation of the atrial cardiomyopathy. Subsets of adult epicardial-derived cells, preprogrammed towards a specific cell fate, contribute to fibro-fatty infiltration of subepicardium of diseased atria. Our study reveals the biological basis for chronic atrial myocardial remodeling that paves the way of atrial fibrillation.


Assuntos
Tecido Adiposo/patologia , Fibrilação Atrial/etiologia , Remodelamento Atrial , Cardiomiopatias/complicações , Átrios do Coração/patologia , Miocárdio/patologia , Pericárdio/patologia , Potenciais de Ação , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Idoso , Animais , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Átrios do Coração/metabolismo , Átrios do Coração/fisiopatologia , Frequência Cardíaca , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Pericárdio/metabolismo , Pericárdio/fisiopatologia , Ratos Wistar , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteínas WT1/genética , Proteínas WT1/metabolismo
6.
Hum Mol Genet ; 28(13): 2237-2244, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220270

RESUMO

Autosomal Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the lamin A/C gene (LMNA) encoding A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. Classically, the disease manifests as scapulo-humero-peroneal muscle wasting and weakness, early joint contractures and dilated cardiomyopathy with conduction blocks; however, variable skeletal muscle involvement can be present. Previously, we and other demonstrated altered activity of signaling pathways in hearts and striated muscles of LmnaH222P/H222P mice, a model of autosomal EDMD. We showed that blocking their activation improved cardiac function. However, the evaluation of the benefit of these treatments on the whole organism is suffering from a better knowledge of the performance in mouse models. We show in the present study that LmnaH222P/H222P mice display a significant loss of lean mass, consistent with the dystrophic process. This is associated with altered VO2 peak and respiratory exchange ratio. These results showed for the first time that LmnaH222P/H222P mice have decreased performance and provided a new useful means for future therapeutic interventions on this model of EDMD.


Assuntos
Lamina Tipo A/genética , Distrofia Muscular de Emery-Dreifuss/genética , Animais , Composição Corporal , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Transgênicos , Distrofia Muscular de Emery-Dreifuss/metabolismo , Distrofia Muscular de Emery-Dreifuss/fisiopatologia , Mutação , Função Ventricular Esquerda , Redução de Peso
7.
FASEB J ; 34(2): 2987-3005, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908029

RESUMO

The expression of α-cardiac actin, a major constituent of the cytoskeleton of cardiomyocytes, is dramatically decreased in a mouse model of dilated cardiomyopathy triggered by inducible cardiac-specific serum response factor (Srf) gene disruption that could mimic some forms of human dilated cardiomyopathy. To investigate the consequences of the maintenance of α-cardiac actin expression in this model, we developed a new transgenic mouse based on Cre/LoxP strategy, allowing together the induction of SRF loss and a compensatory expression of α-cardiac actin. Here, we report that maintenance of α-cardiac actin within cardiomyocytes temporally preserved cytoarchitecture from adverse cardiac remodeling through a positive impact on both structural and transcriptional levels. These protective effects were accompanied in vivo by the decrease of ROS generation and protein carbonylation and the downregulation of NADPH oxidases NOX2 and NOX4. We also show that ectopic expression of α-cardiac actin protects HEK293 cells against oxidative stress induced by H2 O2 . Oxidative stress plays an important role in the development of cardiac remodeling and contributes also to the pathogenesis of heart failure. Taken together, these findings indicate that α-cardiac actin could be involved in the regulation of oxidative stress that is a leading cause of adverse remodeling during dilated cardiomyopathy development.


Assuntos
Actinas/metabolismo , Cardiomiopatia Dilatada/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Actinas/genética , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Modelos Animais de Doenças , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/patologia , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo
8.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805532

RESUMO

Dilated cardiomyopathy (DCM) is a disease of multifactorial etiologies, the risk of which is increased by male sex and age. There are few therapeutic options for patients with DCM who would benefit from identification of common targetable pathways. We used bioinformatics to identify the Nmrk2 gene involved in nicotinamide adenine dinucleotde (NAD) coenzyme biosynthesis as activated in different mouse models and in hearts of human patients with DCM while the Nampt gene controlling a parallel pathway is repressed. A short NMRK2 protein isoform is also known as muscle integrin binding protein (MIBP) binding the α7ß1 integrin complex. We investigated the cardiac phenotype of Nmrk2-KO mice to establish its role in cardiac remodeling and function. Young Nmrk2-KO mice developed an eccentric type of cardiac hypertrophy in response to pressure overload rather than the concentric hypertrophy observed in controls. Nmrk2-KO mice developed a progressive DCM-like phenotype with aging, associating eccentric remodeling of the left ventricle and a decline in ejection fraction and showed a reduction in myocardial NAD levels at 24 months. In agreement with involvement of NMRK2 in integrin signaling, we observed a defect in laminin deposition in the basal lamina of cardiomyocytes leading to increased fibrosis at middle age. The α7 integrin was repressed at both transcript and protein level at 24 months. Nmrk2 gene is required to preserve cardiac structure and function, and becomes an important component of the NAD biosynthetic pathways during aging. Molecular characterization of compounds modulating this pathway may have therapeutic potential.


Assuntos
Envelhecimento/genética , Cardiomiopatia Dilatada/genética , NAD/metabolismo , Niacinamida/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Envelhecimento/fisiologia , Animais , Cardiomegalia/genética , Citosol/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Laminina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Niacinamida/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regulação para Cima , Remodelação Ventricular/genética
9.
Hum Mol Genet ; 27(22): 3870-3880, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30053027

RESUMO

Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscle and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for heart function. Biosynthesis of NAD+ from vitamin B3 (known as salvage pathways) is the primary source of NAD+. We showed here that NAD+ salvage pathway was altered in the heart of mouse and human carrying LMNA mutation, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Oral administration of nicotinamide riboside, a natural NAD+ precursor and a pyridine-nucleoside form of vitamin B3, leads to a marked improvement of the NAD+ cellular content, an increase of PARylation of cardiac proteins and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our results provide mechanistic and therapeutic insights into dilated cardiomyopathy caused by LMNA mutations.


Assuntos
Cardiomiopatias/genética , Coração/fisiopatologia , Lamina Tipo A/genética , NAD/genética , Poli(ADP-Ribose) Polimerase-1/genética , Animais , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Humanos , Camundongos , Mutação , NAD/biossíntese , Niacinamida/genética , Niacinamida/metabolismo , Poli ADP Ribosilação/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/fisiopatologia
10.
Hum Mol Genet ; 27(17): 3060-3078, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878125

RESUMO

Hyper-activation of extracellular signal-regulated kinase (ERK) 1/2 contributes to heart dysfunction in cardiomyopathy caused by mutations in the lamin A/C gene (LMNA cardiomyopathy). The mechanism of how this affects cardiac function is unknown. We show that active phosphorylated ERK1/2 directly binds to and catalyzes the phosphorylation of the actin depolymerizing factor cofilin-1 on Thr25. Cofilin-1 becomes active and disassembles actin filaments in a large array of cellular and animal models of LMNA cardiomyopathy. In vivo expression of cofilin-1, phosphorylated on Thr25 by endogenous ERK1/2 signaling, leads to alterations in left ventricular function and cardiac actin. These results demonstrate a novel role for cofilin-1 on actin dynamics in cardiac muscle and provide a rationale on how increased ERK1/2 signaling leads to LMNA cardiomyopathy.


Assuntos
Actinas/metabolismo , Cardiomiopatia Dilatada/patologia , Cofilina 1/metabolismo , Lamina Tipo A/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Actinas/genética , Adolescente , Adulto , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Estudos de Casos e Controles , Cofilina 1/genética , Feminino , Coração/fisiologia , Humanos , Lamina Tipo A/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosforilação , Transdução de Sinais , Adulto Jovem
11.
J Mol Cell Cardiol ; 127: 215-222, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30599150

RESUMO

Brain renin-angiotensin system (RAS) hyperactivity has been implicated in sympathetic hyperactivity and progressive left ventricular (LV) dysfunction after myocardial infarction (MI). Angiotensin III, generated by aminopeptidase A (APA), is one of the main effector peptides of the brain RAS in the control of cardiac function. We hypothesized that orally administered firibastat (previously named RB150), an APA inhibitor prodrug, would attenuate heart failure (HF) development after MI in mice, by blocking brain RAS hyperactivity. Two days after MI, adult male CD1 mice were randomized to three groups, for four to eight weeks of oral treatment with vehicle (MI + vehicle), firibastat (150 mg/kg; MI + firibastat) or the angiotensin I converting enzyme inhibitor enalapril (1 mg/kg; MI + enalapril) as a positive control. From one to four weeks post-MI, brain APA hyperactivity occurred, contributing to brain RAS hyperactivity. Firibastat treatment normalized brain APA hyperactivity, with a return to the control values measured in sham group two weeks after MI. Four and six weeks after MI, MI + firibastat mice had a significant lower LV end-diastolic pressure, LV end-systolic diameter and volume, and a higher LV ejection fraction than MI + vehicle mice. Moreover, the mRNA levels of biomarkers of HF (Myh7, Bnp and Anf) were significantly lower following firibastat treatment. For a similar infarct size, the peri-infarct area of MI + firibastat mice displayed lower levels of mRNA for Ctgf and collagen types I and III (markers of fibrosis) than MI + vehicle mice. Thus, chronic oral firibastat administration after MI in mice prevents cardiac dysfunction by normalizing brain APA hyperactivity, and attenuates cardiac hypertrophy and fibrosis.


Assuntos
Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Glutamil Aminopeptidase/antagonistas & inibidores , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Sistema Renina-Angiotensina , Administração Oral , Animais , Biomarcadores/metabolismo , Cardiomegalia/complicações , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Enalapril/farmacologia , Fibrose , Glutamil Aminopeptidase/metabolismo , Coração/efeitos dos fármacos , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico por imagem , Sistema Renina-Angiotensina/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos
12.
Circulation ; 137(21): 2256-2273, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29217642

RESUMO

BACKGROUND: Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD+ in the failing heart. METHODS: To explore possible alterations of NAD+ homeostasis in the failing heart, we quantified the expression of NAD+ biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD+ precursor supplementation on cardiac function in both mouse models. RESULTS: We observed a 30% loss in levels of NAD+ in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor α responsive gene that is activated by energy stress and NAD+ depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD+ synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD+ levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS: The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.


Assuntos
Cardiomiopatia Dilatada/tratamento farmacológico , Niacinamida/análogos & derivados , Proteínas Quinases Ativadas por AMP/metabolismo , Acrilamidas/uso terapêutico , Animais , Ácido Cítrico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Insuficiência Cardíaca/prevenção & controle , Metaboloma/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NAD/metabolismo , Niacinamida/uso terapêutico , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , PPAR alfa/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/uso terapêutico , Compostos de Piridínio , Ratos , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética
13.
Hum Mol Genet ; 25(11): 2220-2233, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27131347

RESUMO

Cardiomyopathy caused by lamin A/C gene mutations (LMNA cardiomyopathy) is characterized by increased myocardial fibrosis, which impairs left ventricular relaxation and predisposes to heart failure, and cardiac conduction abnormalities. While we previously discovered abnormally elevated extracellular signal-regulated kinase 1/2 (ERK1/2) activities in heart in LMNA cardiomyopathy, its role on the development of myocardial fibrosis remains unclear. We now showed that transforming growth factor (TGF)-ß/Smad signaling participates in the activation of ERK1/2 signaling in LMNA cardiomyopathy. ERK1/2 acts on connective tissue growth factor (CTGF/CCN2) expression to mediate the myocardial fibrosis and left ventricular dysfunction. Studies in vivo demonstrate that inhibiting CTGF/CCN2 using a specific antibody decreases myocardial fibrosis and improves the left ventricular dysfunction. Together, these findings show that cardiac ERK1/2 activity is modulated in part by TGF-ß/Smad signaling, leading to altered activation of CTGF/CCN2 to mediate fibrosis and alter cardiac function. This identifies a novel mechanism in the development of LMNA cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Fibrose/genética , Lamina Tipo A/genética , Fator de Crescimento Transformador beta/genética , Animais , Cardiomiopatias/patologia , Fibrose/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas Smad/genética , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia
14.
Circ Res ; 118(5): 822-33, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26838788

RESUMO

RATIONALE: Pulmonary arterial hypertension is characterized by vascular remodeling and neomuscularization. PW1(+) progenitor cells can differentiate into smooth muscle cells (SMCs) in vitro. OBJECTIVE: To determine the role of pulmonary PW1(+) progenitor cells in vascular remodeling characteristic of pulmonary arterial hypertension. METHODS AND RESULTS: We investigated their contribution during chronic hypoxia-induced vascular remodeling in Pw1(nLacZ+/-) mouse expressing ß-galactosidase in PW1(+) cells and in differentiated cells derived from PW1(+) cells. PW1(+) progenitor cells are present in the perivascular zone in rodent and human control lungs. Using progenitor markers, 3 distinct myogenic PW1(+) cell populations were isolated from the mouse lung of which 2 were significantly increased after 4 days of chronic hypoxia. The number of proliferating pulmonary PW1(+) cells and the proportion of ß-gal(+) vascular SMC were increased, indicating a recruitment of PW1(+) cells and their differentiation into vascular SMC during early chronic hypoxia-induced neomuscularization. CXCR4 inhibition using AMD3100 prevented PW1(+) cells differentiation into SMC but did not inhibit their proliferation. Bone marrow transplantation experiments showed that the newly formed ß-gal(+) SMC were not derived from circulating bone marrow-derived PW1(+) progenitor cells, confirming a resident origin of the recruited PW1(+) cells. The number of pulmonary PW1(+) cells was also increased in rats after monocrotaline injection. In lung from pulmonary arterial hypertension patients, PW1-expressing cells were observed in large numbers in remodeled vascular structures. CONCLUSIONS: These results demonstrate the existence of a novel population of resident SMC progenitor cells expressing PW1 and participating in pulmonary hypertension-associated vascular remodeling.


Assuntos
Hipertensão Pulmonar/metabolismo , Fatores de Transcrição Kruppel-Like/biossíntese , Músculo Liso Vascular/metabolismo , Células-Tronco/metabolismo , Remodelação Vascular/fisiologia , Animais , Células Cultivadas , Humanos , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/patologia , Ratos , Células-Tronco/patologia
15.
Biochim Biophys Acta ; 1862(4): 611-621, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26775030

RESUMO

We identified murine miR-322, orthologous to human miR-424, as a new regulator of insulin receptor, IGF-1 receptor and sirtuin 4 mRNA in vitro and in vivo in the heart and found that miR-322/424 is highly expressed in the heart of mice. C57Bl/6N mice fed 10weeks of high fat diet (HFD) presented signs of cardiomyopathy and a stable miR-322 cardiac level while cardiac function was slightly affected in 11week-old ob/ob which overexpressed miR-322. We thus hypothesized that mmu-miR-322 could be protective against cardiac consequences of hyperinsulinemia and hyperlipidemia. We overexpressed or knocked-down mmu-miR-322 using AAV9 and monitored cardiac function in wild-type C57Bl/6N mice fed a control diet (CD) or a HFD and in ob/ob mice. The fractional shortening progressively declined while the left ventricle systolic diameter increased in HFD mice infected with an AAVcontrol or with an AAVsponge (decreasing miR-322 bioavailability) but also in ob/ob mice infected with AAVsponge. Similar observations were also found in CD-fed mice infected with AAVsponge. On the contrary over-expressing miR-322 with AAVmiR-322 was efficient in protecting the heart from HFD effects in C57Bl/6N mice. This cardioprotection could be associated with the regulation of identified targets IGF1R, INSR and CD1, a decrease in insulin signaling pathway and an enrichment of genes involved in mitochondrial function and fatty acid oxidation as demonstrated by transcriptome analysis. Altogether, these results emphasize miR-322 as a new potential therapeutic target against cardiac consequences of metabolic syndrome, which represents an increasing burden in the western countries.


Assuntos
Cardiopatias/metabolismo , Insulina/metabolismo , Síndrome Metabólica/metabolismo , MicroRNAs/biossíntese , Transdução de Sinais , Animais , Dependovirus , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Vetores Genéticos , Cardiopatias/genética , Cardiopatias/patologia , Cardiopatias/terapia , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Hiperinsulinismo/terapia , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Hiperlipidemias/terapia , Insulina/genética , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Síndrome Metabólica/terapia , Camundongos , Camundongos Obesos , MicroRNAs/genética , Ratos , Ratos Wistar , Transdução Genética
16.
Biochim Biophys Acta ; 1843(11): 2705-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25110346

RESUMO

UNLABELLED: The sarco(endo)plasmic reticulum Ca(2+)ATPases (SERCA) system, a key regulator of calcium cycling and signaling, is composed of several isoforms. We aimed to characterize the expression of SERCA isoforms in mouse cardiovascular tissues and their modulation in cardiovascular pathologies (heart failure and/or atherosclerosis). Five isoforms (SERCA2a, 2b, 3a, 3b and 3c) were detected in the mouse heart and thoracic aorta. Absolute mRNA quantification revealed SERCA2a as the dominant isoform in the heart (~99%). Both SERCA2 isoforms co-localized in cardiomyocytes (CM) longitudinal sarcoplasmic reticulum (SR), SERCA3b was located at the junctional SR. In the aorta, SERCA2a accounted for ~91% of total SERCA and SERCA2b for ~5%. Among SERCA3, SERCA3b was the most expressed (~3.3%), mainly found in vascular smooth muscle cells (VSMC), along with SERCA2a and 2b. In failing CM, SERCA2a was down-regulated by 2-fold and re-localized from longitudinal to junctional SR. A strong down-regulation of SERCA2a was also observed in atherosclerotic vessels containing mainly synthetic VSMCs. The proportion of both SERCA2b and SERCA3b increased to 9.5% and 8.3%, respectively. IN CONCLUSION: 1) SERCA2a is the major isoform in both cardiac and vascular myocytes; 2) the expression of SERCA2a mRNA is ~30 fold higher in the heart compared to vascular tissues; and 3) nearly half the amount of SERCA2a mRNA is measured in both failing cardiomyocytes and synthetic VSMCs compared to healthy tissues, with a relocation of SERCA2a in failing cardiomyocytes. Thus, SERCA2a is the principal regulator of excitation-contraction coupling in both CMs and contractile VSMCs.

17.
Circulation ; 129(7): 773-85, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24249716

RESUMO

BACKGROUND: Phenotypic modulation or switching of vascular smooth muscle cells from a contractile/quiescent to a proliferative/synthetic phenotype plays a key role in vascular proliferative disorders such as atherosclerosis and restenosis. Although several calcium handling proteins that control differentiation of smooth muscle cells have been identified, the role of protein phosphatase inhibitor 1 (I-1) in the acquisition or maintenance of the contractile phenotype modulation remains unknown. METHODS AND RESULTS: In human coronary arteries, I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase expression is specific to contractile vascular smooth muscle cells. In synthetic cultured human coronary artery smooth muscle cells, protein phosphatase inhibitor 1 (I-1 target) is highly expressed, leading to a decrease in phospholamban phosphorylation, sarco/endoplasmic reticulum Ca2+ -ATPase, and cAMP-responsive element binding activity. I-1 knockout mice lack phospholamban phosphorylation and exhibit vascular smooth muscle cell arrest in the synthetic state with excessive neointimal proliferation after carotid injury, as well as significant modifications of contractile properties and relaxant response to acetylcholine of femoral artery in vivo. Constitutively active I-1 gene transfer decreased neointimal formation in an angioplasty rat model by preventing vascular smooth muscle cell contractile to synthetic phenotype change. CONCLUSIONS: I-1 and sarco/endoplasmic reticulum Ca2+ -ATPase synergistically induce the vascular smooth muscle cell contractile phenotype. Gene transfer of constitutively active I-1 is a promising therapeutic strategy for preventing vascular proliferative disorders.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Fosfatase 1/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vasoconstrição/fisiologia , Animais , Aorta Torácica/citologia , Aorta Torácica/fisiologia , Sinalização do Cálcio/fisiologia , Vasos Coronários/citologia , Vasos Coronários/fisiologia , Artéria Femoral/citologia , Artéria Femoral/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Artéria Torácica Interna/citologia , Artéria Torácica Interna/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Fenótipo , Proteína Fosfatase 1/genética , Proteínas/genética , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Doenças Vasculares/genética , Doenças Vasculares/metabolismo
18.
Hum Mol Genet ; 22(15): 3152-64, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23575224

RESUMO

Dilated cardiomyopathy (DCM) associates left ventricular (LV) dilatation and systolic dysfunction and is a major cause of heart failure and cardiac transplantation. LMNA gene encodes lamins A/C, proteins of the nuclear envelope. LMNA mutations cause DCM with conduction and/or rhythm defects. The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(ΔK32/+) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic ΔK32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac remodelling. In older hearts, when DCM has developed, the lamin A/C level was normalized and associated with increased toxic ΔK32-lamin expression. Crossing our mice with the Ub(G76V)-GFP ubiquitin-proteasome system (UPS) reporter mice revealed a heart-specific UPS impairment in Het. While UPS impairment itself has a clear deleterious effect on engineered heart tissue's force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of ΔK32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our data provide evidence that Het cardiomyocytes have to deal with major dilemma: mutant lamin A/C degradation or normalization of lamin level to fight the deleterious effect of lamin haploinsufficiency, both leading to DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Haploinsuficiência , Heterozigoto , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Núcleo Celular/ultraestrutura , Modelos Animais de Doenças , Progressão da Doença , Feminino , Lamina Tipo A/química , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Mutação , Contração Miocárdica/genética , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
19.
Muscle Nerve ; 52(5): 788-94, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25704632

RESUMO

INTRODUCTION: The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. METHODS: We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. RESULTS: We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. CONCLUSION: These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender.


Assuntos
Membro Posterior/fisiologia , Miocárdio , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Fatores Etários , Animais , Feminino , Coração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Atividade Motora/fisiologia , Contração Muscular/fisiologia
20.
Anesthesiology ; 122(2): 334-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25383567

RESUMO

BACKGROUND: In the senescent heart, the positive inotropic response to ß-adrenoceptor stimulation is reduced, partly by dysregulation of ß1- and ß3-adrenoceptors. The multidrug resistance protein 4 (MRP4) takes part in the control of intracellular cyclic adenosine monophosphate concentration by controlling its efflux but the role of MRP4 in the ß-adrenergic dysfunction of the senescent heart remains unknown. METHODS: The ß-adrenergic responses to isoproterenol were investigated in vivo (stress echocardiography) and in vitro (isolated cardiomyocyte by Ionoptix with sarcomere shortening and calcium transient) in young (3 months old) and senescent (24 months old) rats pretreated or not with MK571, a specific MRP4 inhibitor. MRP4 was quantified in left ventricular homogenates by Western blotting. Data are mean ± SD expressed as percent of baseline value. RESULTS: The positive inotropic effect of isoproterenol was reduced in senescent rats in vivo (left ventricular shortening fraction 120 ± 16% vs. 158 ± 20%, P < 0.001, n = 16 rats) and in vitro (sarcomere shortening 129 ± 37% vs. 148 ± 35%, P = 0.004, n = 41 or 43 cells) as compared to young rats. MRP4 expression increased 3.6-fold in senescent compared to young rat myocardium (P = 0.012, n = 8 rats per group). In senescent rats, inhibition of MRP4 by MK571 restored the positive inotropic effect of isoproterenol in vivo (143 ± 11%, n = 8 rats). In vitro in senescent cardiomyocytes pretreated with MK571, both sarcomere shortening (161 ± 45% vs. 129 ± 37%, P = 0.007, n = 41 cells per group) and calcium transient amplitude (132 ± 25% vs. 113 ± 27%, P = 0.007) increased significantly. CONCLUSION: MRP4 overexpression contributes to the reduction of the positive inotropic response to ß-adrenoceptor stimulation in the senescent heart.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Coração/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Envelhecimento/fisiologia , Animais , Pressão Arterial/efeitos dos fármacos , Broncodilatadores/farmacologia , Cálcio/metabolismo , Ecocardiografia sob Estresse , Coração/crescimento & desenvolvimento , Isoproterenol/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propionatos/farmacologia , Quinolinas/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA