Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36772570

RESUMO

The slow dynamic response of a proton exchange membrane fuel cell (PEMFC) to high load change during deficit periods must be considered. Therefore, integrating the hybrid system with energy storage devices like battery storage and/or a supercapacitor is necessary. To reduce the consumed hydrogen, an energy management strategy (EMS) based on the white shark optimizer (WSO) for photovoltaic/PEMFC/lithium-ion batteries/supercapacitors microgrid has been developed. The EMSs distribute the load demand among the photovoltaic, PEMFC, lithium-ion batteries, and supercapacitors. The design of EMSs must be such that it minimizes the use of hydrogen while simultaneously ensuring that each energy source performs inside its own parameters. The recommended EMS-based-WSO was evaluated in regard to other EMSs regarding hydrogen fuel consumption and effectiveness. The considered EMSs are state machine control strategy (SMCS), classical external energy maximization strategy (EEMS), and optimized EEMS-based particle swarm optimization (PSO). Thanks to the proposed EEMS-based WSO, hydrogen utilization has been reduced by 34.17%, 29.47%, and 2.1%, respectively, compared with SMCS, EEMS, and PSO. In addition, the efficiency increased by 6.05%, 9.5%, and 0.33%, respectively, compared with SMCS, EEMS, and PSO.

2.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838785

RESUMO

A breakthrough in cosmeceuticals by utilizing insects as major ingredients in cosmetic products is gaining popularity. Therefore, the interest in rare sources of ingredients, for instance, from the Oryctes rhinoceros beetle, can bring huge benefits in terms of turning pests into wealth. In this study, curcumin was chosen as the active ingredient loaded into chitosan-gold nanoparticles (CCG-NP). Curcumin is unstable and has poor absorption, a high rate of metabolism, and high sensitivity to light. These are all factors that contribute to the low bioavailability of any substance to reach the target cells. Therefore, chitosan extracted from O. rhinoceros could be used as a drug carrier to overcome these limitations. In order to overcome these limitations, CCG-NPs were synthesized and characterized. Chitosan was isolated from O. rhinoceros and CCG-NPs were successfully synthesized at 70 °C for 60 min under optimal conditions of a reactant ratio of 2:0.5 (0.5 mM HAuCl4: 0.1% curcumin). Characterizations of CCG-NP involved FTIR analysis, zeta potential, morphological properties determination by FE-SEM, particle size analysis, crystallinity study by XRD, and elemental analysis by EDX. The shape of the CCG-NP was round, its size was 128.27 d.nm, and the value of the zeta potential was 20.2 ± 3.81 mV. The IC50 value for cell viability is 58%, indicating a mild toxicity trait. To conclude, CCG-NP is a stable, spherical, nano-sized, non-toxic, and homogeneous solution.


Assuntos
Quitosana , Besouros , Cosmecêuticos , Curcumina , Nanopartículas Metálicas , Nanopartículas , Animais , Quitina , Ouro , Portadores de Fármacos , Tamanho da Partícula
3.
Materials (Basel) ; 16(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005108

RESUMO

In this work, a comprehensive shrinkage and tensile strength characterization of unsaturated polyester (UPE-8340) and vinyl ester (VE-922) epoxy matrices and composites reinforced with multiwall carbon nanotubes (MWCNTs) was conducted. The aspect ratio of UPE and VE with methyl ethyl ketone peroxide (MEKP) was kept at 1:16.6; however, the weight of the MWCNTs was varied from 0.03 to 0.3 gm for the doping of the reinforced nanocomposites. Using a dumbbell-shaped mold, samples of the epoxy matrix without MWCNTs and with reinforced UPE/MWCNT and VE/MWCNT nanocomposites were made. The samples were then cured in a typical ambient chamber with air and an inner gas (carbon dioxide). The effect of the MWCNTs on UPE- and VE-reinforced composites was studied by observing the curing kinetics, shrinkage, and tensile properties, as well as the surface free energy of each reinforced sample in confined saline water. The CO2 curing results reveal that the absence of O2 shows a significantly lower shrinkage rate and higher tensile strength and flexural modulus of UPE- and VE-reinforced nanocomposite samples compared with air-cured reinforced nanocomposites. The construction that was air- and CO2-cured produced results in the shape of a dumbbell, and a flawless surface was seen. The results also show that smaller quantities of MWCNTs made the UPET- and VE-reinforced nanocomposites more stable when they were absorbed and adsorbed in concentrated salt water. Perhaps, compared to air-cured nanocomposites, CO2-cured UPE and VE nanocomposites were better at reducing shrinkage, having important mechanical properties, absorbing water, and being resistant to seawater.

4.
Heliyon ; 9(2): e12810, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793956

RESUMO

Water is a critical component for humans to survive, especially in arid lands or areas where fresh water is scarce. Hence, desalination is an excellent way to effectuate the increasing water demand. Membrane distillation (MD) technology entails a membrane-based non-isothermal prominent process used in various applications, for instance, water treatment and desalination. It is operable at low temperature and pressure, from which the heat demand for the process can be sustainably sourced from renewable solar energy and waste heat. In MD, the water vapors are gone through the membrane's pores and condense at permeate side, rejecting dissolved salts and non-volatile substances. However, the efficacy of water and biofouling are the main challenges for MD due to the lack of appropriate and versatile membrane. Numerous researchers have explored different membrane composites to overcome the above-said issue, and attempt to develop efficient, elegant, and biofouling-resistant novel membranes for MD. This review article addresses the 21st-century water crises, desalination technologies, principles of MD, the different properties of membrane composites alongside compositions and modules of membranes. The desired membrane characteristics, MD configurations, role of electrospinning in MD, characteristics and modifications of membranes used for MD are also highlighted in this review.

5.
Sci Rep ; 13(1): 836, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646741

RESUMO

The oxygenated hydro diesel (OHD) is prepared from hydrogen peroxide (H2O2), acetone, and seaweed polysaccharide. A long-term study was carried out on the OHD fuel blend stability for about a year at various temperatures. The long-term stability shows very stable properties, no easy emulsion breaking, and a long storage period. The neat diesel and blend fuel performance test was conducted at various engine speeds, 1700-3100 RPM the diesel blend with 5 wt.% and 10 wt. % of H2O2 revealed the best fraction for reducing smoke and emissions. The blend contains 15 wt.% H2O2, revealing a significant reduction in exhaust temperature without considering the engine's performance. Moreover, the performance of the OHD also revealed an economizing rate, decreasing environmental pollution and prolonging the engine's service life. The diesel engine performance and environmental evaluation leading to exhaust emissions characterization ([Formula: see text], [Formula: see text], and others). Based on the results, the various concentrations of H2O2 are an effective method for reducing the emission of diesel engines. Decreased CO, SO2, unburned hydrocarbons, and NO2 were also observed as percentages of H2O2. Due to increased oxygen content, water content and cetane number, the number of unburned hydrocarbons from diesel fuel decreased with the addition of H2O2. Therefore, the OHD blend can significantly curtail the exhaust emission of conventional diesel fuel, which will help reduce the harmful greenhouse gas emissions from diesel fuel sources.

6.
Chemosphere ; 307(Pt 4): 136102, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36007731

RESUMO

The study presents the effect of freezing point depression and hydrogen bonding energy interaction on four ammonium hydroxide-based ionic liquids (AHILs) of gas hydrate systems. The AHILs investigated are tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. The considered hydrate system includes methane (CH4), carbon dioxide (CO2), and three binary mixed gas hydrates (70-30 CO2 + CH4, 50-50 CO2 + CH4, 30-70 CO2 + CH4), which are often encountered in the flow assurance pipelines. The experimental temperature range is between 274.0 and 285.0 K, corresponding to pipeline pressures for different gas systems. The thermodynamic influence, i.e., average suppression temperature (ΔT) of the studied system, was reported for different mass concentrations (1, 5, and 10 wt%) and correlated with the freezing point depression and hydrogen bonding energy interaction of AHILs. The study also covers the structural impact of AHILs (in the form of alkyl chain variation) on the thermodynamic hydrate inhibition (THI) behaviour via freezing point and hydrogen bonding energy interactions. Findings revealed that the increased alkyl chain length of AHILs reduced the ΔT due to a decrease in hydrogen bonding ability. The highest THI inhibition (ΔT = 2.27 K) is attained from the lower alkyl chain AHIL, i.e., TMAOH (10 wt%) for the CO2 hydrate system. The freezing point depression of AHILs is a concentration-dependent phenomenon. Increased concentration of the AHILs in the system yielded lower freezing point temperature, positively influencing hydrate mitigation. Although the study provided the initial insight between the freezing point tendency and hydrogen bonding energies of AHILs on thermodynamic inhibition (ΔT). Based on the freezing point depression and hydrogen bonding energy interaction, a more generalized correlation should be developed to predict any potential ionic liquids regarded as promising hydrate inhibitors.

7.
Materials (Basel) ; 15(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35591304

RESUMO

This work investigated low shrinkage curing techniques and characterization of unsaturated polyester (UPE-8340) and vinyl ester (VE-922) reinforced composite. The reinforced polymeric composite was composed using various amounts (0.1 vol.% to 0.5 vol.%) of methyl ethyl ketone peroxide (MEKP) and the proportion of UPE and VE (5 vol.%) was kept fixed throughout the study. The epoxy matrix was formed using a 3D printed acrylonitrile butadiene styrene (ABS) dumbbell shape mold and the specimen was cured in the presence of air and an inner gas (carbon dioxide) using a customized ambient closed chamber system. The influence of MEKP on UPE and VE reinforce composites was studied by investigating curing kinetics, shrinkage, tensile properties, contact angle, and thermal stability. The CO2-cured results show a significant lower shrinkage rate and higher tensile strength and flexural modulus of UPE and VE reinforced composite articles compared with air-cured reinforced composite. These macro-scale results correlate with the air-cured structure, an un-banded smooth surface was observed, and it was found that the lowest amount of MEKP revealed significant improvement in the contact angle of UPET and VE reinforced composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA