Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 80(1): 152-162, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446707

RESUMO

BACKGROUND AND AIMS: High levels of serum matrix metalloproteinase-7 (MMP-7) have been linked to biliary atresia (BA), with wide variation in concentration cutoffs. We investigated the accuracy of serum MMP-7 as a diagnostic biomarker in a large North American cohort. APPROACH AND RESULTS: MMP-7 was measured in serum samples of 399 infants with cholestasis in the Prospective Database of Infants with Cholestasis study of the Childhood Liver Disease Research Network, 201 infants with BA and 198 with non-BA cholestasis (age median: 64 and 59 days, p = 0.94). MMP-7 was assayed on antibody-bead fluorescence (single-plex) and time resolved fluorescence energy transfer assays. The discriminative performance of MMP-7 was compared with other clinical markers. On the single-plex assay, MMP-7 generated an AUROC of 0.90 (CI: 0.87-0.94). At cutoff 52.8 ng/mL, it produced sensitivity = 94.03%, specificity = 77.78%, positive predictive value = 64.46%, and negative predictive value = 96.82% for BA. AUROC for gamma-glutamyl transferase = 0.81 (CI: 0.77-0.86), stool color = 0.68 (CI: 0.63-0.73), and pathology = 0.84 (CI: 0.76-0.91). Logistic regression models of MMP-7 with other clinical variables individually or combined showed an increase for MMP-7+gamma-glutamyl transferase AUROC to 0.91 (CI: 0.88-0.95). Serum concentrations produced by time resolved fluorescence energy transfer differed from single-plex, with an optimal cutoff of 18.2 ng/mL. Results were consistent within each assay technology and generated similar AUROCs. CONCLUSIONS: Serum MMP-7 has high discriminative properties to differentiate BA from other forms of neonatal cholestasis. MMP-7 cutoff values vary according to assay technology. Using MMP-7 in the evaluation of infants with cholestasis may simplify diagnostic algorithms and shorten the time to hepatoportoenterostomy.


Assuntos
Atresia Biliar , Biomarcadores , Metaloproteinase 7 da Matriz , Humanos , Metaloproteinase 7 da Matriz/sangue , Atresia Biliar/diagnóstico , Atresia Biliar/sangue , Biomarcadores/sangue , Lactente , Feminino , Masculino , Recém-Nascido , Estudos de Coortes , Colestase/diagnóstico , Colestase/sangue , Estudos Prospectivos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38860860

RESUMO

Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV) induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated blocking dynamin decreased the infectivity of RRV whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV while late endosome inhibition had no effect. Following infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human BA patients experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that utilize Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10, and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.

3.
J Pediatr ; 259: 113439, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37088181

RESUMO

OBJECTIVE: To evaluate whether the nature and severity of non-A-E severe acute hepatitis in children noted by the World Health Organization from late 2021 through early 2022 was indeed increased in 2021-2022 compared with prior years. STUDY DESIGN: We performed a single-center, retrospective study to track the etiology and outcomes of children with non-A-E severe acute hepatitis in 2021-2022 compared with the prior 3-year periods (2018-2019, 2019-2020, and 2020-2021). We queried electronic medical records of children ≤16 years of age with alanine or aspartate aminotransferase levels of >500 IU. Data were analyzed for the periods of October 1, 2021, to May 1, 2022, and compared with the same time periods in 2018-2021. RESULTS: Of 107 children meeting entry criteria, 82 cases occurred from October to May of 2018-2022. The average annual case number was 16.3 in 2018-2021 compared with a 2-fold increase (to 33) in 2021-2022 (P = .0054). Analyses of etiologies showed that this increase was associated with a higher number of children who tested positive for viruses (n = 16) when compared with the average of 3.7 for 2018-2021 (P = .018). Adenovirus (26.1%) and severe acute respiratory syndrome coronavirus-2 (10.3%) were the most frequently detected viruses in 2021-2022. Despite evidence of acute liver failure in 37.8% of children in the entire cohort and in 47% of those with viral infection, the overall survival rate was high at 91.4% and 88.9%, respectively. CONCLUSIONS: The number of children with severe acute hepatitis in our center increased from 2021 to May 2022, with a greater frequency of cases associated with adenovirus, yet transplant-free survival remains high.


Assuntos
Infecções por Adenoviridae , COVID-19 , Hepatite , Humanos , Criança , Adenoviridae , Estudos Retrospectivos , Incidência , Infecções por Adenoviridae/epidemiologia
4.
Hepatology ; 75(1): 89-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34392560

RESUMO

BACKGROUND AND AIMS: Biliary atresia is a severe inflammatory and fibrosing cholangiopathy of neonates of unknown etiology. The onset of cholestasis at birth implies a prenatal onset of liver dysfunction. Our aim was to investigate the mechanisms linked to abnormal cholangiocyte development. APPROACH AND RESULTS: We generated biliary organoids from liver biopsies of infants with biliary atresia and normal and diseased controls. Organoids emerged from biliary atresia livers and controls and grew as lumen-containing spheres with an epithelial lining of cytokeratin-19pos albuminneg SOX17neg cholangiocyte-like cells. Spheres had similar gross morphology in all three groups and expressed cholangiocyte-enriched genes. In biliary atresia, cholangiocyte-like cells lacked a basal positioning of the nucleus, expressed fewer developmental and functional markers, and displayed misorientation of cilia. They aberrantly expressed F-actin, ß-catenin, and Ezrin, had low signals for the tight junction protein zonula occludens-1 (ZO-1), and displayed increased permeability as evidenced by a higher Rhodamine-123 (R123) signal inside organoids after verapamil treatment. Biliary atresia organoids had decreased expression of genes related to EGF signaling and FGF2 signaling. When treated with EGF+FGF2, biliary atresia organoids expressed differentiation (cytokeratin 7 and hepatocyte nuclear factor 1 homeobox B) and functional (somatostatin receptor 2, cystic fibrosis transmembrane conductance regulator [CFTR], aquaporin 1) markers, restored polarity with improved localization of F-actin, ß-catenin and ZO-1, increased CFTR function, and decreased uptake of R123. CONCLUSIONS: Organoids from biliary atresia are viable and have evidence of halted epithelial development. The induction of developmental markers, improved cell-cell junction, and decreased epithelial permeability by EGF and FGF2 identifies potential strategies to promote epithelial maturation and function.


Assuntos
Ductos Biliares/patologia , Atresia Biliar/patologia , Colestase/patologia , Células Epiteliais/patologia , Organoides/patologia , Adolescente , Ductos Biliares/citologia , Ductos Biliares/crescimento & desenvolvimento , Atresia Biliar/complicações , Biópsia , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Colestase/etiologia , Células Epiteliais/citologia , Voluntários Saudáveis , Humanos , Lactente , Recém-Nascido , Cultura Primária de Células , Junções Íntimas/patologia
5.
Hepatology ; 74(2): 864-878, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33559243

RESUMO

BACKGROUND AND AIMS: Biliary atresia (BA) is a devastating cholangiopathy of infancy. Upon diagnosis, surgical reconstruction by Kasai hepatoportoenterostomy (HPE) restores biliary drainage in a subset of patients, but most patients develop fibrosis and progress to end-stage liver disease requiring liver transplantation for survival. In the murine model of BA, rhesus rotavirus (RRV) infection of newborn pups results in a cholangiopathy paralleling that of human BA. High-mobility group box 1 (HMGB1) is an important member of the danger-associated molecular patterns capable of mediating inflammation during infection-associated responses. In this study, we investigated the role of HMGB1 in BA pathogenesis. APPROACH AND RESULTS: In cholangiocytes, RRV induced the expression and release of HMGB1 through the p38 mitogen-activated protein kinase signaling pathway, and inhibition of p38 blocked HMGB1 release. Treatment of cholangiocytes with ethyl pyruvate suppressed the release of HMGB1. Administration of glycyrrhizin in vivo decreased symptoms and increased survival in the murine model of BA. HMGB1 levels were measured in serum obtained from infants with BA enrolled in the PROBE and START studies conducted by the Childhood Liver Disease Research Network. High HMGB1 levels were found in a subset of patients at the time of HPE. These patients had higher bilirubin levels 3 months post-HPE and a lower survival of their native liver at 2 years. CONCLUSIONS: These results suggest that HMGB1 plays a role in virus induced BA pathogenesis and could be a target for therapeutic interventions in a subset of patients with BA and high HMGB1.


Assuntos
Atresia Biliar/patologia , Doença Hepática Terminal/epidemiologia , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Infecções por Rotavirus/patologia , Animais , Animais Recém-Nascidos , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Ductos Biliares/cirurgia , Atresia Biliar/sangue , Atresia Biliar/cirurgia , Atresia Biliar/virologia , Bilirrubina/sangue , Biomarcadores/sangue , Linhagem Celular , Pré-Escolar , Chlorocebus aethiops , Modelos Animais de Doenças , Doença Hepática Terminal/patologia , Células Epiteliais , Humanos , Lactente , Recém-Nascido , Camundongos , Portoenterostomia Hepática , Medição de Risco , Fatores de Risco , Rotavirus/metabolismo , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia , Resultado do Tratamento
6.
Gastroenterology ; 157(4): 1138-1152.e14, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228442

RESUMO

BACKGROUND & AIMS: Little is known about the factors that affect outcomes of patients with biliary atresia and there are no medical therapies that increase biliary drainage. METHODS: Liver biopsies and clinical data were obtained from infants with cholestasis and from children without liver disease (controls); messenger RNA (mRNA) was isolated, randomly assigned to discovery (n = 121) and validation sets (n = 50), and analyzed by RNA sequencing. Using the Superpc R package followed by Cox regression analysis, we sought to identify gene expression profiles that correlated with survival without liver transplantation at 24 months of age. We also searched for combinations of gene expression patterns, clinical factors, and laboratory results obtained at diagnosis and at 1 and 3 months after surgery that associated with transplant-free survival for 24 months of age. We induced biliary atresia in BALB/c mice by intraperitoneal administration of Rhesus rotavirus type A. Mice were given injections of the antioxidants N-acetyl-cysteine (NAC) or manganese (III) tetrakis-(4-benzoic acid)porphyrin. Blood and liver tissues were collected and analyzed by histology and immunohistochemistry. RESULTS: We identified a gene expression pattern of 14 mRNAs associated with shorter vs longer survival times in the discovery and validation sets (P < .001). This gene expression signature, combined with level of bilirubin 3 months after hepatoportoenterostomy, identified children who survived for 24 months with an area under the curve value of 0.948 in the discovery set and 0.813 in the validation set (P < .001). Computer models correlated a cirrhosis-associated transcriptome with decreased times of transplant-free survival; this transcriptome included activation of genes that regulate the extracellular matrix and numbers of activated stellate cells and portal fibroblasts. Many mRNAs expressed at high levels in liver tissues from patients with 2-year transplant-free survival had enriched scores for glutathione metabolism. Among mice with biliary atresia given injections of antioxidants, only NAC reduced histologic features of liver damage and serum levels of aminotransferase, gamma-glutamyl transferase, and bilirubin. NAC also reduced bile duct obstruction and liver fibrosis and increased survival times. CONCLUSIONS: In studies of liver tissues from infants with cholestasis, we identified a 14-gene expression pattern that associated with transplant-free survival for 2 years. mRNAs encoding proteins that regulate fibrosis genes were increased in liver tissues from infants who did not survive for 2 years, whereas mRNAs that encoded proteins that regulate glutathione metabolism were increased in infants who survived for 2 years. NAC reduced liver injury and fibrosis in mice with biliary atresia, and increased survival times. Agents such as NAC that promote glutathione metabolism might be developed for treatment of biliary atresia.


Assuntos
Atresia Biliar/genética , Atresia Biliar/terapia , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , Transcriptoma , Acetilcisteína/farmacologia , Fatores Etários , Animais , Atresia Biliar/diagnóstico , Atresia Biliar/mortalidade , Estudos de Casos e Controles , Pré-Escolar , Modelos Animais de Doenças , Feminino , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Lactente , Transplante de Fígado , Masculino , Camundongos Endogâmicos BALB C , Fenótipo , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
7.
Development ; 144(6): 1056-1064, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275009

RESUMO

A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects, we first established a liver organoid using human induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids, resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions, we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form, their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs, resulting in the expression of bile salt export pump. In conclusion, the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids, but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Organoides/citologia , Comunicação Parácrina , Animais , Ácidos e Sais Biliares/metabolismo , Transporte Biológico , Biomarcadores/metabolismo , Polaridade Celular , Técnicas de Cocultura , Regulação da Expressão Gênica , Hepatócitos/citologia , Hepatócitos/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Morfogênese/genética , Especificidade de Órgãos/genética , Organoides/metabolismo , Proteínas/análise
8.
Hepatology ; 68(6): 2069-2077, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30153340

RESUMO

The diagnosis of biliary atresia (BA) remains a clinical challenge because affected infants have signs, symptoms, and serum liver biochemistry that are also seen in those with other causes of neonatal cholestasis (non-BA). However, an early diagnosis and prompt surgical treatment are required to improve clinical outcome. Recently, the relative abundance of serum matrix metalloproteinase-7 (MMP-7) was suggested to have discriminatory features for infants with BA. To test the hypothesis that elevated serum concentration of MMP-7 is highly diagnostic for BA, we determined the normal serum concentration of MMP-7 in healthy control infants, and then in 135 consecutive infants being evaluated for cholestasis. The median concentration for MMP-7 was 2.86 ng/mL (interquartile range, IQR: 1.32-5.32) in normal controls, 11.47 ng/mL (IQR: 8.54-24.55) for non-BA, and 121.1 ng/mL (IQR: 85.42-224.4) for BA (P < 0.0001). The area under the curve of MMP-7 for the diagnosis of BA was 0.9900 with a cutoff value of 52.85 ng/mL; the diagnostic sensitivity and specificity were 98.67% and 95.00%, respectively, with a negative predictive value of 98.28%. Conclusion: Serum MMP-7 assay has high sensitivity and specificity to differentiate BA from other neonatal cholestasis, and may be a reliable biomarker for BA.


Assuntos
Atresia Biliar/sangue , Atresia Biliar/diagnóstico , Fígado/metabolismo , Metaloproteinase 7 da Matriz/sangue , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade
9.
J Hepatol ; 69(5): 1136-1144, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29886157

RESUMO

BACKGROUND & AIMS: Biliary atresia (BA) results from a neonatal inflammatory and fibrosing obstruction of bile ducts of unknown etiology. Although the innate immune system has been linked to the virally induced mechanism of disease, the role of inflammasome-mediated epithelial injury remains largely undefined. Here, we hypothesized that disruption of the inflammasome suppresses the neonatal proinflammatory response and prevents experimental BA. METHODS: We determined the expression of key inflammasome-related genes in livers from infants at diagnosis of BA and in extrahepatic bile ducts (EHBDs) of neonatal mice after infection with rotavirus (RRV) immediately after birth. Then, we determined the impact of the wholesale inactivation of the genes encoding IL-1R1 (Il1r1-/-), NLRP3 (Nlrp3-/-) or caspase-1 (Casp1-/-) on epithelial injury and bile duct obstruction. RESULTS: IL1R1, NLRP3 and CASP1 mRNA increased significantly in human livers at the time of diagnosis, and in EHBDs of RRV-infected mice. In Il1r1-/- mice, the epithelial injury of EHBDs induced by RRV was suppressed, with dendritic cells unable to activate natural killer cells. A similar protection was observed in Nlrp3-/- mice, with decreased injury and inflammation of livers and EHBDs. Long-term survival was also improved. In contrast, the inactivation of the Casp1 gene had no impact on tissue injury, and all mice died. Tissue analyses in Il1r1-/- and Nlrp3-/- mice showed decreased populations of dendritic cells and natural killer cells and suppressed expression of type-1 cytokines and chemokines. CONCLUSIONS: Genes of the inflammasome are overexpressed at diagnosis of BA in humans and in the BA mouse model. In the experimental model, the targeted loss of IL-1R1 or NLRP3, but not of caspase-1, protected neonatal mice against RRV-induced bile duct obstruction. LAY SUMMARY: Biliary atresia is a severe inflammatory and obstructive disease of bile ducts occurring in infancy. Although the cause is unknown, activation of the innate and adaptive immune systems injures the bile duct epithelium. In this study we found that patients' livers had increased expression of inflammasome genes. Using mice engineered to inactivate individual inflammasome genes, the epithelial injury and bile duct obstruction were prevented by the loss of Il1r1 or Nlrp3, with a decreased activation of natural killer cells and expression of cytokines and chemokines. In contrast, the loss of Casp1 did not change the disease phenotype. Combined, the findings point to a differential role of inflammasome gene products in the pathogenic mechanisms of biliary atresia.


Assuntos
Atresia Biliar/etiologia , Colestase/etiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Receptores Tipo I de Interleucina-1/fisiologia , Animais , Animais Recém-Nascidos , Atresia Biliar/patologia , Caspase 1/fisiologia , Colestase/patologia , Células Dendríticas/imunologia , Epitélio/patologia , Feminino , Humanos , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores Tipo I de Interleucina-1/genética , Infecções por Rotavirus/complicações
10.
Gastroenterology ; 149(3): 623-34.e8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26026390

RESUMO

BACKGROUND & AIMS: Little is known about the prevalence of nonalcoholic fatty liver disease (NAFLD) among severely obese adolescents or factors that determine its development. We investigated the prevalence of NAFLD in a multicenter cohort of adolescents undergoing bariatric surgery and the factors associated with it. METHODS: We enrolled 242 adolescents undergoing bariatric surgery between March 2007 and February 2012 at 5 tertiary care centers into a multicenter, prospective observational cohort study. Intraoperative core liver biopsies were collected from 165 subjects; 17 were excluded because of insufficient liver tissue or use of hepatotoxic medications, so 148 remained in the study (mean age, 16.8 ± 1.6 years; median body mass index = 52 kg/m(2)). Liver tissues were analyzed by histology using validated criteria. Hepatic gene expression was analyzed in 67 samples. RESULTS: NAFLD was present in 59% of this predominantly female (72%), white (68%), non-Hispanic (91%) cohort. Of subjects with NAFLD, 24% had borderline and 10% had definite nonalcoholic steatohepatitis (NASH). Mild fibrosis (stage 2 or lower) was observed in 18% of liver biopsies and stage 3 was observed in 0.7%, but cirrhosis was not detected. Dyslipidemia was present in 78% of subjects, hypertension in 44%, and diabetes in 14%. More severe NAFLD was associated with increasing levels of alanine aminotransferase, fasting glucose level, hypertension (each P < .01), and white blood cell count (P = .04). Only diabetes was associated with detection of fibrosis (odds ratio = 3.56; 95% confidence interval: 1.93-6.56). Microarray analysis associated presence of NASH with altered expression of genes that regulate macrophage chemotaxis, cholesterol absorption, and fatty acid binding. CONCLUSIONS: More than half of adolescents undergoing bariatric surgery in this cohort had NAFLD, yet the prevalence of severe or fibrotic NASH was low. Increasing severity of NAFLD was associated with level of alanine aminotransferase and cardiometabolic risk factors, but not body mass index. Based on gene expression analysis, borderline and definite NASH were associated with abnormal immune function, intestinal cholesterol absorption, and lipid metabolism.


Assuntos
Cirurgia Bariátrica , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Obesidade Infantil/cirurgia , Adolescente , Distribuição por Idade , Fatores Etários , Alanina Transaminase/sangue , Biomarcadores/sangue , Biópsia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fígado/enzimologia , Fígado/patologia , Cirrose Hepática/epidemiologia , Modelos Logísticos , Estudos Longitudinais , Masculino , Análise Multivariada , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Razão de Chances , Obesidade Infantil/diagnóstico , Obesidade Infantil/epidemiologia , Valor Preditivo dos Testes , Prevalência , Estudos Prospectivos , RNA Mensageiro/análise , Fatores de Risco , Índice de Gravidade de Doença , Estados Unidos/epidemiologia
11.
Hepatol Res ; 46(4): 306-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26126923

RESUMO

AIM: Single gene mutations cause syndromes of intrahepatic cholestasis, but previous multi-gene mutation screening in children with idiopathic cholestasis failed to fulfill diagnostic criteria in approximately two-thirds of children. In adults with fibrosing cholestatic disease, heterozygous ABCB4 mutations were present in 34% of patients. Here, we hypothesized that children with idiopathic cholestasis have a higher frequency of heterozygous non-synonymous gene sequence variants. METHODS: We analyzed the frequency and types of variants in 717 children in whom high-throughput sequencing of the genes SERPINA1, JAG1, ATP8B1, ABCB11 and ABCB4 was performed as part of an evaluation for idiopathic intrahepatic cholestasis cholestasis. The frequency of non-synonymous variants (NSV) was compared with those of 1092 control subjects enrolled in the 1000 Genome Project. RESULTS: The frequency of NSV in single genes was similar between disease (25%) and controls (26%, P = 0.518). In contrast, double or triple NSV in two or more genes were more frequent in disease (n = 7%) than controls (n = 4.7%, P = 0.028). Detailed review of clinical and laboratory information in a subgroup of double or triple heterozygous patients revealed variable γ-glutamyltransferase levels and severity of pruritus, with liver biopsies showing stage 2-3 fibrosis. CONCLUSION: Children with idiopathic intrahepatic cholestasis have a higher frequency of double or triple NSV in SERPINA1, JAG1, ATPB1, ABCB11 or ABCB4. These findings raise the potential role for gene-gene relationships in determining the phenotype of cholestatic liver disease in children.

12.
Hepatology ; 60(1): 211-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24493287

RESUMO

UNLABELLED: Biliary atresia (BA) is a progressive fibroinflammatory obstruction of extrahepatic bile ducts that presents as neonatal cholestasis. Due to the overlap in clinical, biochemical, and histological features with other causes of cholestasis, the diagnosis requires an intraoperative cholangiogram. Thus, we determined whether diseased livers express a gene expression signature unique to BA. Applying stringent statistical analysis to a genome-wide liver expression platform of 64 infants with BA at the time of diagnosis, 14 age-appropriate subjects with intrahepatic cholestasis as diseased controls and seven normal controls, we identified 15 genes uniquely expressed in BA with an accuracy of 92.3%. Among these genes, IL8 and LAMC2 were sufficient to classify subjects with BA distinctly from diseased controls with an area under the curve of 0.934 (95% confidence interval [CI]: 0.84-1.03), sensitivity of 96.9%, and specificity of 85.7% using their combined first principal component. Direct measurement of interleukin (IL)8 protein in the serum, however, was not different between the two groups. To investigate whether the liver-restricted increase in IL8 was relevant to disease pathogenesis, we inactivated the signaling of IL8 homologs by genetic targeting of the Cxcr2 receptor in a murine model of experimental BA. Disruption of Cxcr2 shortened the duration of cholestasis, decreased the incidence of bile duct obstruction, and improved survival above wild-type neonatal mice. CONCLUSION: The hepatic expression of IL8 and LAMC2 has high sensitivity for BA at diagnosis and may serve as a biomarker of disease, with an important role for the IL8 signaling in experimental BA.


Assuntos
Atresia Biliar , Estudo de Associação Genômica Ampla/métodos , Interleucina-8/genética , Interleucina-8/imunologia , Animais , Animais Recém-Nascidos , Atresia Biliar/diagnóstico , Atresia Biliar/genética , Atresia Biliar/imunologia , Biomarcadores/sangue , Colestase/diagnóstico , Colestase/genética , Colestase/imunologia , Diagnóstico Diferencial , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Recém-Nascido , Interleucina-8/sangue , Laminina/genética , Laminina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Estudos Prospectivos , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/imunologia , Sensibilidade e Especificidade
13.
J Hepatol ; 60(2): 370-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24096050

RESUMO

BACKGROUND & AIMS: Biliary atresia represents obstructive cholangiopathy in infants progressing rapidly to cirrhosis and end-stage liver disease. Activated NK cells expressing Nkg2d have been linked to bile duct injury and obstruction by establishing contact with cholangiocytes. To define the mechanisms used by cytotoxic cells, we investigated the role of perforin and granzymes in a neonatal mouse model of rotavirus (RRV)-induced biliary atresia. METHODS: We used complementary cell lysis assays, flow cytometric analyses, quantitative PCRs and in vivo systems to determine the mechanisms of bile duct epithelial injury and the control of the tissue phenotype in experimental biliary atresia. RESULTS: RRV-infected hepatic NK and CD8 T cells increased the expression of perforin and injured cholangiocytes in short-term culture in a perforin-dependent fashion. However, the loss of perforin in vivo delayed but did not prevent the obstruction of bile ducts. Based on the increased expression of granzymes by perforin-deficient cytotoxic cells in long-term cytolytic assays, we found that the inhibition of granzymes by nafamostat mesilate (FUT-175) blocked cholangiocyte lysis. Administration of FUT-175 to perforin-deficient mice after RRV infection decreased the development of jaundice, minimized epithelial injury, and improved long-term survival. However, the inhibition of granzymes alone in wild-type mice was not sufficient to prevent the atresia phenotype in newborn mice. In infants with biliary atresia, hepatic Granzymes A and B mRNA, but not Perforin, increased at the time of portoenterostomy. CONCLUSIONS: Perforin and granzymes have complementary roles mediating epithelial injury by NK and CD8 T cells. The prevention of experimental biliary atresia can only be achieved by inhibiting both granules.


Assuntos
Atresia Biliar/etiologia , Atresia Biliar/metabolismo , Granzimas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Animais Recém-Nascidos , Benzamidinas , Ductos Biliares/imunologia , Ductos Biliares/patologia , Atresia Biliar/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Colestase/etiologia , Colestase/patologia , Colestase/prevenção & controle , Modelos Animais de Doenças , Granzimas/antagonistas & inibidores , Granzimas/genética , Guanidinas/farmacologia , Humanos , Lactente , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Citotóxicas Formadoras de Poros/deficiência , Proteínas Citotóxicas Formadoras de Poros/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Infecções por Rotavirus/complicações
14.
Hepatol Commun ; 6(5): 995-1004, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34962102

RESUMO

Children with biliary atresia (BA) often develop portal hypertension (PHT) and its complications, which are associated with high morbidity and mortality. The goal of this study was to identify serum biomarkers of PHT by using large-scale proteomics. We applied the slow off-rate modified aptamer scan (SOMAscan) to measure 1,305 proteins in serum samples of children with BA with and without clinical evidence of PHT in validation and discovery cohorts enrolled in the Biliary Atresia Study of Infants and Children. Serum proteomics data was analyzed using logistic regression to identify protein(s) with an area under the receiver operating characteristic curve (AUROC) ≥ 0.90. Immunostaining was used to characterize the cellular localization of the new biomarker proteins in liver tissues. We identified nine proteins in the discovery cohort (n = 40 subjects) and five proteins in the validation cohort (n = 80 subjects) that individually or in combination predicted clinical PHT with AUROCs ≥ 0.90. Merging the two cohorts, we found that semaphorin 6B (SEMA6B) alone and three other protein combinations (SEMA6B+secreted frizzle protein 3 [SFRP3], SEMA6B+COMM domain containing 7 [COMMD7], and vascular cell adhesion molecule 1 [VCAM1]+BMX nonreceptor tyrosine kinase [BMX]) had AUROCs ≥ 0.90 in both cohorts, with high positive- and negative-predictive values. Immunostaining of the new protein biomarkers showed increased expression in hepatic endothelial cells, cholangiocytes, and immune cells within portal triads in BA livers with clinical PHT compared to healthy livers. Conclusion: Large-scale proteomics identified SEMA6B, SFRP3, COMMD7, BMX, and VCAM1 as biomarkers highly associated with clinical PHT in BA. The expression of the biomarkers in hepatic epithelial, endothelial, and immune cells support their potential role in the pathophysiology of PHT.


Assuntos
Atresia Biliar , Hipertensão Portal , Atresia Biliar/complicações , Biomarcadores , Criança , Células Endoteliais , Humanos , Hipertensão Portal/diagnóstico , Lactente , Proteômica
15.
Nat Commun ; 13(1): 18, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013245

RESUMO

Maternal seeding of the microbiome in neonates promotes a long-lasting biological footprint, but how it impacts disease susceptibility in early life remains unknown. We hypothesized that feeding butyrate to pregnant mice influences the newborn's susceptibility to biliary atresia, a severe cholangiopathy of neonates. Here, we show that butyrate administration to mothers renders newborn mice resistant to inflammation and injury of bile ducts and improves survival. The prevention of hepatic immune cell activation and survival trait is linked to fecal signatures of Bacteroidetes and Clostridia and increases glutamate/glutamine and hypoxanthine in stool metabolites of newborn mice. In human neonates with biliary atresia, the fecal microbiome signature of these bacteria is under-represented, with suppression of glutamate/glutamine and increased hypoxanthine pathways. The direct administration of butyrate or glutamine to newborn mice attenuates the disease phenotype, but only glutamine renders bile duct epithelial cells resistant to cytotoxicity by natural killer cells. Thus, maternal intake of butyrate influences the fecal microbial population and metabolites in newborn mice and the phenotypic expression of experimental biliary atresia, with glutamine promoting survival of bile duct epithelial cells.


Assuntos
Atresia Biliar/imunologia , Atresia Biliar/terapia , Colestase/metabolismo , Microbioma Gastrointestinal , Animais , Animais Recém-Nascidos , Ductos Biliares/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Humanos , Recém-Nascido , Inflamação/metabolismo , Células Matadoras Naturais/imunologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Gravidez
17.
Pediatr Res ; 67(4): 345-51, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20234283

RESUMO

Biliary atresia is an obstructive cholangiopathy of unknown etiology. Although the adaptive immune system has been shown to regulate the obstruction of bile ducts in a rotavirus-induced mouse model, little is known about the virus-induced inflammatory response. Here, we hypothesized that cholangiocytes secrete chemoattractants in response to rotavirus. To test this hypothesis, we infected cholangiocyte and macrophage cell lines with rhesus rotavirus type A (RRV), quantified cytokines and chemokines and measured the migration of splenocytes. We also used PCR and immunostaining to search for new cellular targets of RRV in the liver. We found that RRV-infected cholangiocytes induced the mRNA expression for chemokines, but conditioned media failed to promote chemotaxis of splenocytes. Analyzing livers after viral challenge, we detected RRV in hepatic macrophages and demonstrated that media from RRV-infected macrophages have high concentrations of cytokines and chemokines and induced chemotaxis of neutrophils. Most notably, addition of anti-Mip2/Cxcl2 antibodies depleted this chemokine in the conditioned media and completely prevented neutrophil chemotaxis. In conclusion, infected cholangiocytes did not promote chemotaxis of inflammatory cells. Investigating alternate cellular targets of RRV, we detected the virus in hepatic macrophages and found that infected macrophages promoted neutrophil chemotaxis by release of Mip2/Cxcl2 in response to RRV.


Assuntos
Quimiocina CXCL2/metabolismo , Quimiotaxia/fisiologia , Macrófagos/imunologia , Macrófagos/virologia , Neutrófilos/fisiologia , Rotavirus/patogenicidade , Animais , Atresia Biliar , Linhagem Celular , Quimiocina CXCL2/genética , Citocinas/genética , Citocinas/imunologia , Vesícula Biliar/citologia , Vesícula Biliar/patologia , Fígado/citologia , Fígado/patologia , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/citologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia
18.
J Pediatr Gastroenterol Nutr ; 51(4): 488-493, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683201

RESUMO

BACKGROUND: The discovery of genetic mutations in children with inherited syndromes of intrahepatic cholestasis allows for diagnostic specificity despite similar clinical phenotypes. Here, we aimed to determine whether mutation screening of target genes could assign a molecular diagnosis in children with idiopathic cholestasis. PATIENTS AND METHODS: DNA samples were obtained from 51 subjects with cholestasis of undefined etiology and surveyed for mutations in the genes SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 by a high-throughput gene chip. Then, the sequence readouts for all 5 genes were analyzed for mutations and correlated with clinical phenotypes. Healthy subjects served as controls. RESULTS: Sequence analysis of the genes identified 14 (or 27%) subjects with missense, nonsense, deletion, and splice site variants associated with disease phenotypes based on the type of mutation and/or biallelic involvement in the JAG1, ATP8B1, ABCB11, or ABCB4 genes. These patients had no syndromic features and could not be differentiated by biochemical markers or histopathology. Among the remaining subjects, 10 (or ∼20%) had sequence variants in ATP8B1 or ABCB11 that involved only 1 allele, 8 had variants not likely to be associated with disease phenotypes, and 19 had no variants that changed amino acid composition. CONCLUSIONS: Gene sequence analysis assigned a molecular diagnosis in 27% of subjects with idiopathic cholestasis based on the presence of variants likely to cause disease phenotypes.


Assuntos
Colestase/genética , Mutação/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Adolescente , Proteínas de Ligação ao Cálcio/genética , Criança , Pré-Escolar , Colestase/diagnóstico , Diagnóstico Diferencial , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Proteínas de Membrana/genética , Proteínas Serrate-Jagged , alfa 1-Antitripsina/genética
19.
Dig Med Res ; 32020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33615212

RESUMO

Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.

20.
Front Oncol ; 10: 627701, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33718121

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and a leading cause of death in the US and worldwide. HCC remains a global health problem and is highly aggressive with unfavorable prognosis. Even with surgical interventions and newer medical treatment regimens, patients with HCC have poor survival rates. These limited therapeutic strategies and mechanistic understandings of HCC immunopathogenesis urgently warrant non-palliative treatment measures. Irrespective of the multitude etiologies, the liver microenvironment in HCC is intricately associated with chronic necroinflammation, progressive fibrosis, and cirrhosis as precedent events along with dysregulated innate and adaptive immune responses. Central to these immunological networks is the complement cascade (CC), a fundamental defense system inherent to the liver which tightly regulates humoral and cellular responses to noxious stimuli. Importantly, the liver is the primary source for biosynthesis of >80% of complement components and expresses a variety of complement receptors. Recent studies implicate the complement system in liver inflammation, abnormal regenerative responses, fibrosis, carcinogenesis, and development of HCC. Although complement activation differentially promotes immunosuppressive, stimulant, and angiogenic microenvironments conducive to HCC development, it remains under-investigated. Here, we review derangement of specific complement proteins in HCC in the context of altered complement regulatory factors, immune-activating components, and their implications in disease pathogenesis. We also summarize how complement molecules regulate cancer stem cells (CSCs), interact with complement-coagulation cascades, and provide therapeutic opportunities for targeted intervention in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA