Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant J ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970620

RESUMO

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.

2.
Crit Rev Food Sci Nutr ; 62(29): 8009-8027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33977844

RESUMO

Authenticity and adulteration detection are primary concerns of various stakeholders, such as researchers, consumers, manufacturers, traders, and regulatory agencies. Traditional approaches for authenticity and adulteration detection in edible oils are time-consuming, complicated, laborious, and expensive; they require technical skills when interpreting the data. Over the last several years, much effort has been spent in academia and industry on developing vibrational spectroscopic techniques for quality, authenticity, and adulteration detection in edible oils. Among them, Fourier transforms infrared (FT-IR) spectroscopy has gained enormous attention as a green analytical technique for the rapid monitoring quality of edible oils at all stages of production and for detecting and quantifying adulteration and authenticity in edible oils. The technique has several benefits such as rapid, precise, inexpensive, and multi-analytical; hence, several parameters can be predicted simultaneously from the same spectrum. Associated with chemometrics, the technique has been successfully implemented for the rapid detection of adulteration and authenticity in edible oils. After presenting the fundamentals, the latest research outcomes in the last 10 years on quality, authenticity, and adulteration detection in edible oils using FT-IR spectroscopy will be highlighted and described in this review. Additionally, opportunities, challenges, and future trends of FT-IR spectroscopy will also be discussed.


Assuntos
Gorduras Insaturadas na Dieta , Contaminação de Alimentos , Gorduras Insaturadas na Dieta/análise , Alimentos , Contaminação de Alimentos/análise , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Sci Total Environ ; 945: 173998, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38901575

RESUMO

Globally, power stations generate huge amounts of the hazardous waste heavy oil fly ash (HOFA), which is rich in Ni, V, Fe, S, and dumped into landfills. Thus, exploring new approaches for a safe recycling and sustainable management of HOFA is needed and of great environmental interest. The potential application of HOFA as an amendment to sandy soils has not been studied yet. This is the first research investigating the potentiality of using HOFA as a soil conditioner. To this end, we conducted a greenhouse experiment in order to investigate the impacts of HOFA addition (1.2, 2.4, 3.6 t ha-1) to sandy soil on the total and available content of nutrients (e.g., S, Fe, Mn, Cu, Zn) and toxic elements (TEs; e.g., Cd, Co, Cr, Ni, Pb, V) in the soil and their phytoextraction and translocation by lemongrass (Cymbopogon citratus) and common sage (Salvia officinalis). We also assessed the impact of humic acid (HA) foliar application (50 and 100 l ha-1) on the growth and elements accumulation by the two plants. The studied HOFA was acidic and highly enriched in S (43,268.0), V (3,527.0), Ni (1774.0), and Fe (15,159.0) (units in mg kg-1). The X-ray absorption near edge structure (XANES) data showed that V in HOFA was composed primarily of V(IV) sorbed onto goethite, V(V) sorbed onto humic substances, in the forms of V2O3, and VCl4. Addition of the lower doses of HOFA (1.2 and 2.4 t ha-1) did not change significantly soil pH, salinity, and the total and available elements content compared to the unamended soil. Although the elements content in the 3.6 t ha-1 HOFA-treated soil was significantly higher than the untreated, the total content of all elements (except for Ni) was lower than the maximum allowable concentrations in soils. HOFA addition, particularly in the highest dose (3.6 t ha-1), decreased significantly the growth and biomass of both plants. Common sage accumulated more elements than lemongrass; however, the elements content in the plants was lower than the critical concentrations for sensitive plants. The foliar application of humic acid enhanced significantly the plant growth and increased their tolerance to the HOFA-induced stress. We conclude that the addition of HOFA up to 2.4 t ha-1 in a single application as amendment to sandy soils is not likely to create any TE toxicity problems to plants, particularly if combined with a foliar application of humic acid; however, repeated additions of HOFA may induce toxicity. These findings should be verified under field conditions.


Assuntos
Cinza de Carvão , Substâncias Húmicas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Solo/química , Cymbopogon , Fertilizantes , Enxofre , Metais Pesados/análise
4.
Front Plant Sci ; 14: 1192818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528983

RESUMO

Introduction: Alternaria solani is a challenging pathogen in the tomato crop globally. Chemical control is a rapid approach, but emerging fungicide resistance has become a severe threat. The present study investigates the use of culture filtrates (CFs) of three species of Trichoderma spp. to control this disease. Methods: Highly virulent A. solani strain and three Trichoderma fungal strains viz., T. harzianum (Accession No: MW590687), T. atroviride (Accession No: MW590689) and T. longibrachiatum (Accession No: MW590688) previously isolated by authors were used in this study. The efficacy of culture filtrates (CFs) to mitigate early blight disease were tested under greenhouse and field conditions, experiments were conducted in different seasons of 2020 using a tomato variety "doucen". Results and discussion: The CFs of T. harzianum, T. longibrachiatum, and T. atroviride significantly inhibited the in vitro mycelial growth of A. solani (62.5%, 48.73%, and 57.82%, respectively, followed by control 100%). In the GC-MS analysis of Trichoderma CF volatile compounds viz., harzianic acid (61.86%) in T. harzianum, linoleic acid (70.02%) in T. atroviride, and hydroxymethylfurfural (68.08%) in the CFs of T. longibrachiatum, were abundantly present. Foliar application of CFs in the greenhouse considerably reduced the disease severity (%) in all treatments, viz., T. harzianum (18.03%), T. longibrachiatum (31.91%), and T. atroviride (23.33%), followed by infected control (86.91%), and positively affected the plant biomarkers. In the greenhouse, the plants treated with CFs demonstrated higher flavonoids after 6 days of inoculation, whereas phenolic compounds increased after 2 days. The CF-treated plants demonstrated higher antioxidant enzymes, i.e., phenylalanine ammonia-lyase (PAL) and peroxidase (POD), after 4 days, whereas polyphenol oxidase (PPO) was higher after 6 days of inoculation, followed by healthy and infected controls. In open field conditions, disease severity in CF-treated plants was reduced in both seasons as compared to naturally infected plants, whereas CF-treated plants exhibited a higher fruit yield than controls. The present results conclude that CFs can be a potential biocontrol candidate and a promising alternative to the early blight pathogen for sustainable production.

5.
Curr Res Food Sci ; 6: 100483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033735

RESUMO

Quinoa is one of the highest nutritious grains, and global consumption of quinoa flour has increased as people pay more attention to health. Due to its high value, quinoa flour is susceptible to adulteration. Cross-contamination between quinoa flour and other flour can be easily neglected due to their highly similar appearance. Therefore, detecting adulteration in quinoa flour is important to consumers, industries, and regulatory agencies. In this study, portable hyperspectral imaging in the visible near-infrared (VNIR) spectral range (400-1000 nm) was applied as a rapid tool to detect adulteration in quinoa flour. Quinoa flour was adulterated with wheat, rice, soybean, and corn in the range of 0-98% with 2% increments. Partial least squares regression (PLSR) models were developed, and the best model for detecting the % authentic flour (quinoa) was obtained by the raw spectral data with R2p of 0.99, RMSEP of 3.08%, RPD of 8.77, and RER of 25.32. The model was improved, by selecting only 13 wavelengths using bootstrapping soft shrinkage (BOSS), to R2p of 0.99, RMSEP of 2.93%, RPD of 9.18, and RER of 26.60. A visualization map was also generated to predict the level of quinoa in the adulterated samples. The results of this study demonstrate the ability of VNIR hyperspectral imaging for adulteration detection in quinoa flour as an alternative to the complicated traditional method.

6.
Plants (Basel) ; 11(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631726

RESUMO

Shrimp waste is rich in organic compounds and essential plant nutrients, e.g., calcium (Ca), and converting these wastes to organic fertilizer is important for environmental preservation and to achieve sustainable agricultural management. In the current study, Ca-rich biochar was prepared from shrimp wastes (SWB) by pyrolysis at 300 °C. We hypothesized that the Ca-rich biochar will help in solving the problem of plant growth in saline soil by reducing sodium (Na) uptake and mitigating oxidative stress. The current study aimed to investigate the effect of SWB on the quality of saline sandy soil and the mechanism of salt resistance in pearl millet (Pennisetum glaucum L.). Pearl millet plants were planted in saline sandy soil (10 dS m-1) in wooden boxes (1.3 × 0.8 m size and 0.4 m height), and 5 doses (0, 1.0, 1.5, 2.0, and 2.5% (w/w)) of SWB were added. SWB application increased the soil quality and nutrient uptake by pearl millet plants. The highest rate of SWB increased the soil microbial biomass carbon and the activity of dehydrogenase enzyme by 43 and 47% compared to the control soil. SWB application reduced the uptake of sodium (Na+) and chloride (Cl-) and increased the K/Na ratio in the leaf tissues. SWB addition significantly increased the activity of antioxidant enzymes, e.g., ascorbate peroxidase (APX), polyphenol oxidase (PPO), and pyrogallol peroxidases (PPX). The application of 2.5% SWB to the saline soil increased the soluble carbohydrates and proline in plant leaves by 75 and 60%, respectively, and reduced the malondialdehyde (MDA) by 32% compared to the control. SWB enhanced the antioxidant defense and mitigated oxidative stress by improving the synthesis of osmoprotectants, e.g., soluble carbohydrates and proline. Sandy saline soils in arid and semiarid areas suffer greatly from low organic matter contents, which reduces the soil quality and increases the risk of salt during plant growth. The high organic matter and calcium content (30%) in the shrimp waste-derived biochar improved the quality of the saline sandy soil, reduced the uptake of toxic salts, and increased the quality of the forage material. The addition of recycled shrimp waste to saline low-fertility soils improves soil productivity and is safe for soil health.

7.
Plants (Basel) ; 11(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015443

RESUMO

Despite the proven biological activity of the aerial part extract of Alchemilla vulgaris, scarce information is available about the activity of the root extract. This encouraged us to initiate the current investigation to study the cytotoxic activity of A. vulgaris methanolic root extract against various cancer cell lines in vitro, along with its antimicrobial activity and phytochemical screening. MTT assay was applied to test the cytotoxic effect against the prostate (PC-3), breast (MCF-7) and colorectal adenocarcinoma (Caco-2), together with normal Vero cells. Flow cytometry was employed to assess cell cycle arrest and apoptosis vs. necrosis in PC-3 cells. The expression of apoptosis-related genes (BAX, BCL2 and P53) was quantified by qRT-PCR analysis. The obtained results showed strong antiproliferative activity on the three cancer cell lines and the normal Vero cells in a dose-dependent manner. A high selectivity index (SI) was recorded against the three cell lines with PC-3 cells showing the highest SI and the lowest IC50. This effect was associated with cell cycle arrest at G1 phase and induction of total apoptosis at 27.18% being mainly early apoptosis. Apoptosis induction was related to the upregulation of the proapoptotic genes P53 and BAX and the downregulation of the antiapoptotic gene BCL2. Additionally, the extract demonstrated in vitro antibacterial activity against Agrobacterium tumefaciens, Serratia marcescens and Acinetobacter johnsoni. Additionally, it showed antifungal activity against Rhizoctonia solani, Penicillium italicum and Fusarium oxysporium. Seven phenolic acids and seven flavonoids were detected. The predominant phenolic acids were cinnamic and caffeic acids, while hisperdin and querestin were the principal flavonoids. These findings provide clear evidence about the promising proapoptotic effect of A. vulgaris root extract, which contributes to laying the basis for broader and in-depth future investigations.

8.
Plants (Basel) ; 11(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235487

RESUMO

The therapeutic importance of Balanites aegyptiaca in folk medicine for the treatment of several common human diseases has led researchers to conduct phytochemical and pharmacological studies on extracts from various parts of the plant. In the current study, the phytochemical composition of the B. aegyptiaca methanolic fruit extract was characterized, and its antimicrobial activity was evaluated together with the cytotoxic activity against MCF-7, PC-3, and Caco-2, compared with normal Vero cells. Further, its effects on cell cycle arrest, apoptosis induction and expression of apoptosis-related genes were assessed. The phytochemical screening revealed the presence of fatty acids and their esters in addition to phytosterols, steroid derivatives, and bioflavonoid glycosides with oleic and palmitic acids being the prevalent components (24.12 and 21.56%, respectively). The results showed considerable cytotoxic activity of the extract against the three cancer cell lines (MCF-7, PC-3, and Caco-2) with a selectivity index ranging from 5.07 to 6.52. This effect was further confirmed with the accompanied increased total apoptosis of treated PC-3 cells (19.22% of the total number of cells) compared to the control cells (0.64% of the total number of cells) with cell cycle arrest at G1 phase and the increased transcription of pro-apoptotic genes including P53 (3.69) and BAX (3.33) expressed as fold change (2^ ΔΔCT). The calculated minimum inhibitory concentration (MIC) was similar (62.5 µg/mL) against the three tested bacterial strains (Acinetobacter johnsonii, Serratia marcescens and Agrobacterium tumefaciens), while it was higher than 1000 µg/mL for the fungal species (Rhizoctonia solani, Penicillium italicum, and Fusarium oxysporium). Our findings suggest a promising anticancer activity for B. aegyptiaca, which paves the way for more detailed future studies.

9.
Plants (Basel) ; 11(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956468

RESUMO

Effective alternative strategies and methodological approaches are critically necessary for cancer prevention and therapy. In this study, we investigated the antitumor potential of neem fruit mesocarp and epicarp extracts. The chemical composition of the derived extracts was characterized using GC-MS. Data were collected on the antimicrobial activity of the extracts in addition to the cytotoxicity effect evaluated against PC-3, MCF-7, and Caco-2 cancer cell lines, compared with the normal Vero cells. Cell-cycle arrest, apoptosis, and expression of apoptosis-related genes were assessed on PC-3 cells. Both extracts had significant antiproliferative effects on all tested cell lines in a dose-dependent manner, with the mesocarp extract being more potent. Both extracts also showed high antibacterial and antifungal activities. These results were related to the chemical constituents of the extracts identified by the GC-MS analysis. The extract of neem fruit mesocarp caused cell-cycle arrest at G2/M phase of PC-3 cells. The cytotoxicity of neem mesocarp extract is strongly correlated with the induction of apoptosis, where it caused downregulation of the antiapoptotic BCL2 gene but upregulation of the proapoptotic P53 and BAX genes. This study showed that neem fruit extract is potential anticancer material in the future.

10.
Plants (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34579292

RESUMO

Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.

11.
Front Artif Intell ; 3: 28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33733147

RESUMO

Biomass and yield are key variables for assessing the production and performance of agricultural systems. Modeling and predicting the biomass and yield of individual plants at the farm scale represents a major challenge in precision agriculture, particularly when salinity and other abiotic stresses may play a role. Here, we evaluate a diversity panel of the wild tomato species (Solanum pimpinellifolium) through both field and unmanned aerial vehicle (UAV)-based phenotyping of 600 control and 600 salt-treated plants. The study objective was to predict fresh shoot mass, tomato fruit numbers, and yield mass at harvest based on a range of variables derived from the UAV imagery. UAV-based red-green-blue (RGB) imageries collected 1, 2, 4, 6, 7, and 8 weeks before harvest were also used to determine if prediction accuracies varied between control and salt-treated plants. Multispectral UAV-based imagery was also collected 1 and 2 weeks prior to harvest to further explore predictive insights. In order to estimate the end of season biomass and yield, a random forest machine learning approach was implemented using UAV-imagery-derived predictors as input variables. Shape features derived from the UAV, such as plant area, border length, width, and length, were found to have the highest importance in the predictions, followed by vegetation indices and the entropy texture measure. The multispectral UAV imagery collected 2 weeks prior to harvest produced the highest explained variances for fresh shoot mass (87.95%), fruit numbers (63.88%), and yield mass per plant (66.51%). The RGB UAV imagery produced very similar results to those of the multispectral UAV dataset, with the explained variance reducing as a function of increasing time to harvest. The results showed that predicting the yield of salt-stressed plants produced higher accuracies when the models excluded control plants, whereas predicting the yield of control plants was not affected by the inclusion of salt-stressed plants within the models. This research demonstrates that it is possible to predict the average biomass and yield up to 8 weeks prior to harvest within 4.23% of field-based measurements and up to 4 weeks prior to harvest at the individual plant level. Results from this work may be useful in providing guidance for yield forecasting of healthy and salt-stressed tomato plants, which in turn may inform growing practices, logistical planning, and sales operations.

12.
Front Plant Sci ; 10: 370, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984222

RESUMO

With salt stress presenting a major threat to global food production, attention has turned to the identification and breeding of crop cultivars with improved salt tolerance. For instance, some accessions of wild species with higher salt tolerance than commercial varieties are being investigated for their potential to expand food production into marginal areas or to use brackish waters for irrigation. However, assessment of individual plant responses to salt stress in field trials is time-consuming, limiting, for example, longitudinal assessment of large numbers of plants. Developments in Unmanned Aerial Vehicle (UAV) sensing technologies provide a means for extensive, repeated and consistent phenotyping and have significant advantages over standard approaches. In this study, 199 accessions of the wild tomato species, Solanum pimpinellifolium, were evaluated through a field assessment of 600 control and 600 salt-treated plants. UAV imagery was used to: (1) delineate tomato plants from a time-series of eight RGB and two multi-spectral datasets, using an automated object-based image analysis approach; (2) assess four traits, i.e., plant area, growth rates, condition and Plant Projective Cover (PPC) over the growing season; and (3) use the mapped traits to identify the best-performing accessions in terms of yield and salt tolerance. For the first five campaigns, >99% of all tomato plants were automatically detected. The omission rate increased to 2-5% for the last three campaigns because of the presence of dead and senescent plants. Salt-treated plants exhibited a significantly smaller plant area (average control and salt-treated plant areas of 0.55 and 0.29 m2, respectively), maximum growth rate (daily maximum growth rate of control and salt-treated plant of 0.034 and 0.013 m2, respectively) and PPC (5-16% difference) relative to control plants. Using mapped plant condition, area, growth rate and PPC, we show that it was possible to identify eight out of the top 10 highest yielding accessions and that only five accessions produced high yield under both treatments. Apart from showcasing multi-temporal UAV-based phenotyping capabilities for the assessment of plant performance, this research has implications for agronomic studies of plant salt tolerance and for optimizing agricultural production under saline conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA