Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396696

RESUMO

The rise of antimicrobial resistance poses a significant global health threat, necessitating urgent efforts to identify novel antimicrobial agents. In this study, we undertook a thorough screening of soil-derived bacterial isolates to identify candidates showing antimicrobial activity against Gram-positive bacteria. A highly active antagonistic isolate was initially identified as Bacillus altitudinis ECC22, being further subjected to whole genome sequencing. A bioinformatic analysis of the B. altitudinis ECC22 genome revealed the presence of two gene clusters responsible for synthesizing two circular bacteriocins: pumilarin and a novel circular bacteriocin named altitudin A, alongside a closticin 574-like bacteriocin (CLB) structural gene. The synthesis and antimicrobial activity of the bacteriocins, pumilarin and altitudin A, were evaluated and validated using an in vitro cell-free protein synthesis (IV-CFPS) protocol coupled to a split-intein-mediated ligation procedure, as well as through their in vivo production by recombinant E. coli cells. However, the IV-CFPS of CLB showed no antimicrobial activity against the bacterial indicators tested. The purification of the bacteriocins produced by B. altitudinis ECC22, and their evaluation by MALDI-TOF MS analysis and LC-MS/MS-derived targeted proteomics identification combined with massive peptide analysis, confirmed the production and circular conformation of pumilarin and altitudin A. Both bacteriocins exhibited a spectrum of activity primarily directed against other Bacillus spp. strains. Structural three-dimensional predictions revealed that pumilarin and altitudin A may adopt a circular conformation with five- and four-α-helices, respectively.


Assuntos
Bacillus , Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/química , Cromatografia Líquida , Escherichia coli/metabolismo , Espectrometria de Massas em Tandem , Bacillus/metabolismo
2.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047785

RESUMO

Recently, the food industry and the animal farming field have been working on different strategies to reduce the use of antibiotics in animal production. The use of probiotic producers of antimicrobial peptides (bacteriocins) is considered to be a potential solution to control bacterial infections and to reduce the use of antibiotics in animal production. In this study, Ligilactobacillus salivarius P1CEA3, isolated from the gastrointestinal tract (GIT) of pigs, was selected for its antagonistic activity against Gram-positive pathogens of relevance in swine production. Whole genome sequencing (WGS) of L. salivarius P1ACE3 revealed the existence of two gene clusters involved in bacteriocin production, one with genes encoding the class II bacteriocins salivaricin B (SalB) and Abp118, and a second cluster encoding a putative nisin variant. Colony MALDI-TOF MS determinations and a targeted proteomics combined with massive peptide analysis (LC-MS/MS) of the antimicrobial peptides encoded by L. salivarius P1CEA3 confirmed the production of a 3347 Da novel nisin variant, termed nisin S, but not the production of the bacteriocins SalB and Abp118, in the supernatants of the producer strain. This is the first report of a nisin variant encoded and produced by L. salivarius, a bacterial species specially recognized for its safety and probiotic potential.


Assuntos
Bacteriocinas , Ligilactobacillus salivarius , Nisina , Suínos , Animais , Nisina/genética , Nisina/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Bacteriocinas/genética , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Peptídeos Antimicrobianos
3.
J Immunol ; 202(3): 857-870, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610164

RESUMO

CK11 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to both mammalian CCL27 and CCL28 chemokines, strongly transcribed in skin and gills in homeostasis, for which an immune role had not been reported to date. In the current study, we have demonstrated that CK11 is not chemotactic for unstimulated leukocyte populations from central immune organs or mucosal tissues but instead exerts a potent antimicrobial activity against a wide range of rainbow trout pathogens. Our results show that CK11 strongly inhibits the growth of different rainbow trout Gram-positive and Gram-negative bacteria, namely Lactococcus garvieae, Aeromonas salmonicida subsp. salmonicida, and Yersinia ruckeri and a parasitic ciliate Ichthyophthirius multifiliis Similarly to mammalian chemokines and antimicrobial peptides, CK11 exerted its antimicrobial activity, rapidly inducing membrane permeability in the target pathogens. Further transcriptional studies confirmed the regulation of CK11 transcription in response to exposure to some of these pathogens in specific conditions. Altogether, our studies related to phylogenetic relations, tissue distribution, and biological activity point to CK11 as a potential common ancestor of mammalian CCL27 and CCL28. To our knowledge, this study constitutes the first report of a fish chemokine with antimicrobial activity, thus establishing a novel role for teleost chemokines in antimicrobial immunity that supports an evolutionary relationship between chemokines and antimicrobial peptides.


Assuntos
Quimiocinas CC/imunologia , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Oncorhynchus mykiss/imunologia , Aeromonas salmonicida , Animais , Quimiocina CCL27/genética , Quimiocinas CC/genética , Quimiocinas CC/isolamento & purificação , Quimiotaxia , Perfilação da Expressão Gênica , Brânquias/imunologia , Filogenia , Pele/imunologia , Yersinia ruckeri
4.
Fish Shellfish Immunol ; 86: 135-142, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30448446

RESUMO

Teleost fish possess all the necessary elements to mount an adaptive immune response. Despite this, the important physiological and structural differences between the mammalian and the teleost fish immune system, anticipate significant changes regarding how this response is coordinated and executed. B cells are key players in adaptive immune responses through the production of antibodies. However, recent studies performed in mammals and other species including fish point to many additional functions of B cells within both the adaptive and the innate immune system, in many occasions taking part in the crosstalk between these two arms of the immune response. Furthermore, it should be taken into account that fish B cells share many functional and phenotypical features with innate B cell populations from mammals, which will surely condition their response to antigens. Concerning viral infections, although most studies undertaken to date in fish have been focused on characterizing antibody production, some recent studies have demonstrated that fish B cells are able to interact with viruses at different levels. In this sense, in the current review, we have tried to provide an overview of what is currently known regarding the role of teleost B cells in antiviral immunity.


Assuntos
Linfócitos B/fisiologia , Doenças dos Peixes/virologia , Peixes , Viroses/veterinária , Animais , Imunoglobulinas , Viroses/imunologia
5.
Fish Shellfish Immunol ; 86: 25-34, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30439501

RESUMO

Flavobacterium psychrophilum is the etiological agent of bacterial cold water disease (BCWD), also referred to as rainbow trout fry syndrome (RTFS), a disease with great economic impact in salmonid aquaculture. Despite this, to date, not many studies have analyzed in depth how the immune system is regulated during the course of the disease. In the current study, we have studied the transcription of several immune genes related to T and B cell activity in the skin of rainbow trout (Oncorhynchus mykiss) naturally infected with F. psychrophilum in a farm located in Lake Titicaca (Peru). The levels of expression of these genes were tested and compared to those obtained in asymptomatic and apparently healthy rainbow trout. In the case of symptomatic fish, skin samples containing characteristic ulcerative lesions were taken, as well as skin samples with no lesions. Our results pointed to a significant local up-regulation of IgD, CD4, CD8, perforin and IFNγ within the ulcerative lesions. On the other hand, no differences between the levels of expression of these genes were visible in the spleen. To confirm these results, the distribution of IgD+ and CD3+ cells was studied through immunohistochemical techniques in the ulcerative lesions. Our results demonstrate a strong local response to F. psychrophilum in rainbow trout in which IgD and T cells seem to play a major role.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/genética , Regulação da Expressão Gênica/imunologia , Oncorhynchus mykiss/imunologia , Animais , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/imunologia , Imunoglobulinas/metabolismo , Oncorhynchus mykiss/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Baço
6.
Dis Aquat Organ ; 119(2): 129-43, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27137071

RESUMO

The use of lactic acid bacteria (LAB) as probiotics constitutes an alternative or complementary strategy to chemotherapy and vaccination for disease control in aquaculture. The objectives of this work were (1) the in vitro safety assessment of 8 Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus mykiss, Walbaum) feed and larvae; (2) the evaluation of their genetic relatedness; (3) the study of their antimicrobial/bacteriocin activity against fish pathogens; and (4) the biochemical and genetic characterization of the bacteriocin produced by the strain displaying the greatest antimicrobial activity. Concerning the safety assessment, none of the pediococci showed antibiotic resistance nor produced hemolysin or gelatinase, degraded gastric mucin, or deconjugated bile salts. Four strains (50%) produced tyramine or putrescine, but the corresponding genes were not amplified by PCR. Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) fingerprinting allowed clustering of the pediococci into 2 well-defined groups (68% similarity). From the 8 pediococci displaying direct antimicrobial activity against at least 3 out of 9 fish pathogens, 6 strains (75%) were identified as bacteriocin producers. The bacteriocin produced by P. acidilactici L-14 was purified, and mass spectrometry and DNA sequencing revealed its identity to pediocin PA-1 (PedPA-1). Altogether, our results allowed the identification of 4 (50%) putatively safe pediococci, including 2 bacteriocinogenic strains. ERIC-PCR fingerprinting was a valuable tool for genetic profiling of P. acidilactici strains. This work reports for the first time the characterization of a PedPA-1-producing P. acidilactici strain isolated from an aquatic environment (rainbow trout larvae), which shows interesting properties related to its potential use as a probiotic in aquaculture.


Assuntos
Ração Animal/microbiologia , Antibiose/fisiologia , Impressões Digitais de DNA , Doenças dos Peixes/microbiologia , Oncorhynchus mykiss/microbiologia , Pediococcus/isolamento & purificação , Animais , DNA Bacteriano/genética , Larva/microbiologia , Pediococcus/genética , Probióticos , Transcriptoma
7.
Fish Shellfish Immunol ; 44(1): 214-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25707601

RESUMO

In aquaculture, several criteria should be considered to select an appropriate probiotic, including the aquatic origin and safety of the strain and its ability to modulate the host immune response. The properties and effects of probiotics are strain-specific and some factors such as viability, dose and duration of diet supplementation may regulate their immunomodulatory activities. In this study, we assessed the in vitro effect of eight heat-inactivated and viable lactic acid bacteria (LAB) of aquatic origin belonging to the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Weissella on the viability and innate immune response of turbot (Scophthalmus maximus L.) leucocytes. Head-kidney leucocytes were incubated with viable and heat-inactivated LAB at different concentrations. After incubation, the viability of leucocytes was evaluated using colorimetric assays (MTT and LDH) and flow cytometry (annexin V/propidium iodide). Heat-inactivated LAB showed no cytotoxic effect while viable LAB exerted variable influence on apoptosis of turbot phagocytes and lymphocytes. Leucocyte respiratory burst activity and phagocytosis were also differentially activated, as viable LAB stimulated leucocytes more efficiently than the heat-inactivated LAB. Our results suggest diverse strain-specific mechanisms of interaction between the evaluated LAB and turbot leucocytes. Furthermore, our work sets up in vitro systems to evaluate the effect of LAB as potential probiotics, which will be useful to develop efficient screening.


Assuntos
Linguados/imunologia , Rim Cefálico/imunologia , Lactobacillales , Leucócitos/imunologia , Probióticos , Animais , Apoptose , Sobrevivência Celular , Temperatura Alta , Imunidade Inata , L-Lactato Desidrogenase , Ácido Láctico , Fagocitose , Explosão Respiratória
8.
Foodborne Pathog Dis ; 12(4): 311-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25671551

RESUMO

The use of lactic acid bacteria of aquatic origin as probiotics constitutes an alternative strategy to the antibiotic treatment for disease control in aquaculture. Enterococci are currently used as probiotics in human and animal health. In this study, we evaluated the safety of 64 enterococci isolated from rainbow trout (Oncorhynchus mykiss, Walbaum), feed and rearing environment, and their antimicrobial activity against 9 fish pathogens. The 64 enterococcal isolates were identified to the species level by polymerase chain reaction (PCR), using specific primers for the different enterococcal species, and confirmed by superoxide dismutase gene sequencing. Enterococcus faecium and E. hirae were the most common species (42.2 and 35.9%, respectively). A total of 48 isolates (75%) showed phenotypic resistance to at least 1 antibiotic determined by a disk-diffusion method, and 25 isolates (39.1%) harbored at least 1 antibiotic resistance gene [erm(B), tet(M), tet(S), tet(K), tet(L), tet(T), vanC2, and aad(E)], detected by PCR. One (1.6%) isolate produced gelatinase and none produced hemolysin, using a plate assay. The virulence genes gelE (46.9%), efaAfs (17.2%), agg (1.6%), and hyl (1.6%) were detected by PCR. A total of 48 isolates (75%) exerted antimicrobial activity against 1 or more of the tested fish pathogens, using a stab-on-agar test. From these isolates, 21 (43.8%) harbored at least 1 bacteriocin-encoding gene (entP, entL50A and entL50B, hirJM79, entSE-K4, entQ and entA), detected by PCR. None of the enterococci showed bile deconjugation and mucin degradation abilities. A total of 17 enterococcal isolates (26.6%) that did not harbor any antibiotic resistance or virulence factor were considered safe for application as probiotics, including 6 isolates (35.3%) that showed antimicrobial activity against at least 1 fish pathogen and harbored at least 1 bacteriocin-encoding gene. Rainbow trout, feed, and rearing environment constitute an appropriate source for the isolation of enterococci as potential probiotic for aquaculture.


Assuntos
Ração Animal/microbiologia , Enterococcus/classificação , Enterococcus/isolamento & purificação , Genes MDR , Oncorhynchus mykiss/microbiologia , Animais , Antibacterianos/farmacologia , Aquicultura , Farmacorresistência Bacteriana/genética , Enterococcus/efeitos dos fármacos , Genótipo , Testes de Sensibilidade Microbiana , Probióticos , Fatores de Virulência/genética
9.
Anaerobe ; 32: 7-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25464142

RESUMO

This work reports the isolation and taxonomic identification of the cultivable total microbiota (TM) and Lactic Acid Bacteria (LAB) from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment from selected stages of the life-cycle, and the evaluation of the LAB antimicrobial activity against the main fish pathogens. TM and LAB isolates were randomly selected and identified by 16S rRNA and/or superoxide dismutase gene sequencing. Although a great diversity in the TM was observed, Enterobacteriaceae and Aeromonadaceae were clearly prevalent, while the genus Lactococcus was the predominant LAB. From a total of 1620 randomly selected LAB, 1159 isolates (71.5%) showed antimicrobial activity. From these, 248 isolates (21.4%) selected for their activity against, at least, four fish pathogens, were taxonomically identified, being Lactococcus lactis the most common species (164 isolates, 66.1%). Interestingly, 88 isolates (35.5%), including 55 L. lactis isolates, exerted activity against four strains of the rainbow trout pathogen Lactococcus garvieae. Our results demonstrate that rainbow trout and rearing environment are potential sources for the isolation of LAB, mainly lactococci, active against L. garvieae and other fish pathogens. Moreover, this is the first study describing the cultivable TM and LAB from rainbow trout intestine and rearing environment along the fish life-cycle. The host-derived LAB active against fish pathogens comprise potential candidates as probiotics in rainbow trout farming as an alternative or complementary strategy to antibiotics and vaccines for disease prevention.


Assuntos
Antibiose , Peixes/microbiologia , Interações Hospedeiro-Patógeno , Microbiota , Animais , Código de Barras de DNA Taxonômico , Lactobacillales/classificação , Lactobacillales/genética , Lactobacillales/metabolismo , Metagenoma
10.
Fish Shellfish Immunol ; 41(2): 570-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451001

RESUMO

Turbot (Scophthalmus maximus L.) is an important commercial marine flatfish. Its production may be affected by bacterial diseases that cause severe economical losses, mainly tenacibaculosis and vibriosis, provoked by Tenacibaculum maritimum and Vibrio splendidus, respectively. An alternative or complementary strategy to chemotherapy and vaccination for the control of these diseases is the use of probiotics. In this work, we report the in vitro and in vivo potential of eight lactic acid bacteria (LAB), previously isolated from fish, seafood and fish products intended for human consumption, as turbot probiotics. Seven out of the eight LAB exerted direct antimicrobial activity against, at least, four strains of T. maritimum and V. splendidus. All LAB survived in seawater at 18 °C for 7 days, and withstood exposure to pH 3.0 and 10% (v/v) turbot bile; however, they differed in cell surface hydrophobicity (8.2-21.7%) and in their ability to adhere to turbot skin (1.2-21.7%) and intestinal (0.7-2.1%) mucus. Most of the tested strains inhibited the binding of turbot pathogens to the mucus. Leuconostoc mesenteroides subsp. cremoris SMM69 and Weissella cibaria P71 were selected based on their strong antimicrobial activity against T. maritimum and V. splendidus, good probiotic properties, and different adhesion ability to skin mucus and capacity to inhibit the adhesion of turbot pathogens to mucus. These two LAB strains were harmless when administered by bath to turbot larvae and juveniles; moreover, real-time PCR on the transcription levels of the immunity-related genes encoding IL-1ß, TNF-α, lysozyme, C3, MHC-Iα and MHC-IIα in five organs (head-kidney, spleen, liver, intestine and skin) revealed the ability of these LAB to stimulate their expression in turbot juveniles, especially the non-specific immunity associated genes in mucosal tissues. Based on our results, Lc. cremoris SMM69 and W. cibaria P71 may be considered as suitable probiotic candidates for turbot farming.


Assuntos
Aquicultura/métodos , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Linguados/crescimento & desenvolvimento , Infecções por Flavobacteriaceae/veterinária , Probióticos/farmacologia , Vibrioses/veterinária , Análise de Variância , Animais , Primers do DNA/genética , Infecções por Flavobacteriaceae/prevenção & controle , Técnicas In Vitro , Lactobacillales/genética , Reação em Cadeia da Polimerase em Tempo Real , Tenacibaculum/efeitos dos fármacos , Vibrio/efeitos dos fármacos , Vibrioses/prevenção & controle
11.
Genes (Basel) ; 15(1)2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38254954

RESUMO

Aquaculture plays a crucial role in meeting the increasing global demand for food and protein sources. However, its expansion is followed by increasing challenges, such as infectious disease outbreaks and antibiotic misuse. The present study focuses on the genetic and functional analyses of two Lacticaseibacillus paracasei (BF3 and RT4) and two Lactiplantibacillus plantarum (BF12 and WT12) strains isolated from a rotifer cultivation tank used for turbot larviculture. Whole-genome sequencing (WGS) and bioinformatics analyses confirmed their probiotic potential, the absence of transferable antibiotic resistance genes, and the absence of virulence and pathogenicity factors. Bacteriocin mining identified a gene cluster encoding six plantaricins, suggesting their role in the antimicrobial activity exerted by these strains. In vitro cell-free protein synthesis (IV-CFPS) analyses was used to evaluate the expression of the plantaricin genes. The in vitro-synthesized class IIb (two-peptide bacteriocins) plantaricin E/F (PlnE/F) exerted antimicrobial activity against three indicator microorganisms, including the well-known ichthyopathogen Lactococcus garvieae. Furthermore, MALDI-TOF MS on colonies detected the presence of a major peptide that matches the dimeric form of plantaricins E (PlnE) and F (PlnF). This study emphasizes the importance of genome sequencing and bioinformatic analysis for evaluating aquaculture probiotic candidates. Moreover, it provides valuable insights into their genetic features and antimicrobial mechanisms, paving the way for their application as probiotics in larviculture, which is a major bottleneck in aquaculture.


Assuntos
Lacticaseibacillus paracasei , Rotíferos , Animais , Genômica , Rotíferos/genética , Antibacterianos , Aquicultura , Peptídeos
12.
Animals (Basel) ; 14(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791633

RESUMO

Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.

13.
BMC Microbiol ; 13: 15, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347637

RESUMO

BACKGROUND: The microorganisms intended for use as probiotics in aquaculture should exert antimicrobial activity and be regarded as safe not only for the aquatic hosts but also for their surrounding environments and humans. The objective of this work was to investigate the antimicrobial/bacteriocin activity against fish pathogens, the antibiotic susceptibility, and the prevalence of virulence factors and detrimental enzymatic activities in 99 Lactic Acid Bacteria (LAB) (59 enterococci and 40 non-enterococci) isolated from aquatic animals regarded as human food. RESULTS: These LAB displayed a broad antimicrobial/bacteriocin activity against the main Gram-positive and Gram-negative fish pathogens. However, particular safety concerns based on antibiotic resistance and virulence factors were identified in the genus Enterococcus (86%) (Enterococcus faecalis, 100%; E. faecium, 79%). Antibiotic resistance was also found in the genera Weissella (60%), Pediococcus (44%), Lactobacillus (33%), but not in leuconostocs and lactococci. Antibiotic resistance genes were found in 7.5% of the non-enterococci, including the genera Pediococcus (12.5%) and Weissella (6.7%). One strain of both Pediococcus pentosaceus and Weissella cibaria carried the erythromycin resistance gene mef(A/E), and another two P. pentosaceus strains harboured lnu(A) conferring resistance to lincosamides. Gelatinase activity was found in E. faecalis and E. faecium (71 and 11%, respectively), while a low number of E. faecalis (5%) and none E. faecium exerted hemolytic activity. None enterococci and non-enterococci showed bile deconjugation and mucin degradation abilities, or other detrimental enzymatic activities. CONCLUSIONS: To our knowledge, this is the first description of mef(A/E) in the genera Pediococcus and Weissella, and lnu(A) in the genus Pediococcus. The in vitro subtractive screening presented in this work constitutes a valuable strategy for the large-scale preliminary selection of putatively safe LAB intended for use as probiotics in aquaculture.


Assuntos
Antibacterianos/farmacologia , Antibiose , Organismos Aquáticos/microbiologia , Bacteriocinas/metabolismo , Lactobacillales/metabolismo , Lactobacillales/patogenicidade , Fatores de Virulência/genética , Animais , Aquicultura/métodos , Lactobacillales/efeitos dos fármacos , Lactobacillales/isolamento & purificação , Testes de Sensibilidade Microbiana
14.
Foods ; 13(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201135

RESUMO

Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production.

15.
iScience ; 26(1): 105854, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36619985

RESUMO

The differentiation of B cells into antibody-secreting cells is fundamental for the generation of humoral immunity. In mammals, this process involves a series of metabolic and intracellular changes, not studied to date in teleost fish, where a clear distinction between naive B cells and plasmablasts/plasma cells (PCs) is still missing. Thus, in the current study, we have established that upon activation, teleost B cells undergo an expansion of the endoplasmic reticulum (ER) but experience no significant changes in mitochondria content. In parallel, the transcription of genes implicated in B cell differentiation increases, while that of mitochondrial genes decreases. In this context, ER monitoring has allowed us to distinguish between small cells with low amounts of ER (FSCloERlo B cells), that correspond to undifferentiated cells, and large cells with expanded ER (FSChiERhi B cells), characterized as plasmablasts. The results shed new light on the B cell differentiation process in teleosts and provide us with novel tools to study B cell function in these species.

16.
Front Immunol ; 14: 1178462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153602

RESUMO

Lactic Acid Bacteria (LAB) are a group of bacteria frequently proposed as probiotics in aquaculture, as their administration has shown to confer positive effects on the growth, survival rate to pathogens and immunological status of the fish. In this respect, the production of antimicrobial peptides (referred to as bacteriocins) by LAB is a common trait thoroughly documented, being regarded as a key probiotic antimicrobial strategy. Although some studies have pointed to the direct immunomodulatory effects of these bacteriocins in mammals, this has been largely unexplored in fish. To this aim, in the current study, we have investigated the immunomodulatory effects of bacteriocins, by comparing the effects of a wild type nisin Z-expressing Lactococcus cremoris strain of aquatic origin to those exerted by a non-bacteriocinogenic isogenic mutant and a recombinant nisin Z, garvicin A and Q-producer multi-bacteriocinogenic strain. The transcriptional response elicited by the different strains in the rainbow trout intestinal epithelial cell line (RTgutGC) and in splenic leukocytes showed significant differences. Yet the adherence capacity to RTgutGC was similar for all strains. In splenocyte cultures, we also determined the effects of the different strains on the proliferation and survival of IgM+ B cells. Finally, while the different LAB elicited respiratory burst activity similarly, the bacteriocinogenic strains showed an increased ability to induce the production of nitric oxide (NO). The results obtained reveal a superior capacity of the bacteriocinogenic strains to modulate different immune functions, pointing to a direct immunomodulatory role of the bacteriocins, mainly nisin Z.


Assuntos
Bacteriocinas , Lactobacillales , Lactococcus lactis , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/microbiologia , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Bacteriocinas/farmacologia , Mamíferos
17.
Foods ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36900581

RESUMO

Lactococcus garvieae is a main ichthyopathogen in rainbow trout (Oncorhynchus mykiss, Walbaum) farming, although bacteriocinogenic L. garvieae with antimicrobial activity against virulent strains of this species have also been identified. Some of the bacteriocins characterized, such as garvicin A (GarA) and garvicin Q (GarQ), may show potential for the control of the virulent L. garvieae in food, feed and other biotechnological applications. In this study, we report on the design of Lactococcus lactis strains that produce the bacteriocins GarA and/or GarQ, either alone or together with nisin A (NisA) or nisin Z (NisZ). Synthetic genes encoding the signal peptide of the lactococcal protein Usp45 (SPusp45), fused to mature GarA (lgnA) and/or mature GarQ (garQ) and their associated immunity genes (lgnI and garI, respectively), were cloned into the protein expression vectors pMG36c, which contains the P32 constitutive promoter, and pNZ8048c, which contains the inducible PnisA promoter. The transformation of recombinant vectors into lactococcal cells allowed for the production of GarA and/or GarQ by L. lactis subsp. cremoris NZ9000 and their co-production with NisA by Lactococcus lactis subsp. lactis DPC5598 and L. lactis subsp. lactis BB24. The strains L. lactis subsp. cremoris WA2-67 (pJFQI), a producer of GarQ and NisZ, and L. lactis subsp. cremoris WA2-67 (pJFQIAI), a producer of GarA, GarQ and NisZ, demonstrated the highest antimicrobial activity (5.1- to 10.7-fold and 17.3- to 68.2-fold, respectively) against virulent L. garvieae strains.

18.
Pathogens ; 12(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38133330

RESUMO

The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) and taxonomically identified as Staphylococcus epidermidis (n = 16), Staphylococcus saprophyticus (n = 4), Staphylococcus hominis (n = 3), Staphylococcus pasteuri (n = 2), Staphylococcus edaphicus (n = 1), and Staphylococcus capitis (n = 1). Biofilm formation was evaluated with a microtiter assay, antibiotic susceptibility testing was performed using the disk diffusion method, and antibiotic resistance and virulence determinants were detected by PCR. Our results showed that all staphylococci produced biofilms and that 92.6% of the isolates were resistant to at least one antibiotic, mainly penicillin (88.8%), fusidic acid (40.7%), and erythromycin (37%). The penicillin resistance gene (blaZ) was detected in 66.6% (18) of the isolates, of which 10 also carried resistance genes to macrolides and lincosamides (mphC, msr(A/B), lnuA, or vgaA), 4 to fusidic acid (fusB), and 3 to trimethoprim-sulfamethoxazole (dfrA). At least one virulence gene (scn, hla, SCCmecIII, and/or SCCmecV) was detected in 48% of the isolates. This study suggests that wild European hake destined for human consumption could act as a vector of CoNS carrying antibiotic resistance genes and/or virulence factors.

19.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336097

RESUMO

Probiotics are a viable alternative to traditional chemotherapy agents to control infectious diseases in aquaculture. In this regard, Lactococcus lactis subsp. cremoris WA2-67 has previously demonstrated several probiotic features, such as a strong antimicrobial activity against ichthyopathogens, survival in freshwater, resistance to fish bile and low pH, and hydrophobicity. The aim of this manuscript is an in silico analysis of the whole-genome sequence (WGS) of this strain to gain deeper insights into its probiotic properties and their genetic basis. Genomic DNA was purified, and libraries prepared for Illumina sequencing. After trimming and assembly, resulting contigs were subjected to bioinformatic analyses. The draft genome of L. cremoris WA2-67 consists of 30 contigs (2,573,139 bp), and a total number of 2493 coding DNA sequences (CDSs). Via in silico analysis, the bacteriocinogenic genetic clusters encoding the lantibiotic nisin Z (NisZ) and two new bacteriocins were identified, in addition to several probiotic traits, such as the production of vitamins, amino acids, adhesion/aggregation, and stress resistance factors, as well as the absence of transferable antibiotic resistance determinants and genes encoding detrimental enzymatic activities and virulence factors. These results unveil diverse beneficial properties that support the use of L. cremoris WA2-67 as a probiotic for aquaculture.

20.
Front Microbiol ; 13: 1052686, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452926

RESUMO

Circular bacteriocins are antimicrobial peptides produced by bacteria that after synthesis undergo a head-to-tail circularization. Compared to their linear counterparts, circular bacteriocins are, in general, very stable to temperature and pH changes and more resistant to proteolytic enzymes, being considered as one of the most promising groups of antimicrobial peptides for their potential biotechnological applications. Up to now, only a reduced number of circular bacteriocins have been identified and fully characterized, although many operons potentially coding for new circular bacteriocins have been recently found in the genomes of different bacterial species. The production of these peptides is very complex and depends on the expression of different genes involved in their synthesis, circularization, and secretion. This complexity has greatly limited the identification and characterization of these bacteriocins, as well as their production in heterologous microbial hosts. In this work, we have evaluated a synthetic biology approach for the in vitro and in vivo production combined with a split-intein mediated ligation (SIML) of the circular bacteriocin garvicin ML (GarML). The expression of one single gene is enough to produce a protein that after intein splicing, circularizes in an active peptide with the exact molecular mass and amino acid sequence as native GarML. In vitro production coupled with SIML has been validated with other, well described and not yet characterized, circular bacteriocins. The results obtained suggest that this synthetic biology tool holds great potential for production, engineering, improving and testing the antimicrobial activity of circular bacteriocins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA