Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 513(7517): 229-32, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25162528

RESUMO

The number and extent of roads will expand dramatically this century. Globally, at least 25 million kilometres of new roads are anticipated by 2050; a 60% increase in the total length of roads over that in 2010. Nine-tenths of all road construction is expected to occur in developing nations, including many regions that sustain exceptional biodiversity and vital ecosystem services. Roads penetrating into wilderness or frontier areas are a major proximate driver of habitat loss and fragmentation, wildfires, overhunting and other environmental degradation, often with irreversible impacts on ecosystems. Unfortunately, much road proliferation is chaotic or poorly planned, and the rate of expansion is so great that it often overwhelms the capacity of environmental planners and managers. Here we present a global scheme for prioritizing road building. This large-scale zoning plan seeks to limit the environmental costs of road expansion while maximizing its benefits for human development, by helping to increase agricultural production, which is an urgent priority given that global food demand could double by mid-century. Our analysis identifies areas with high environmental values where future road building should be avoided if possible, areas where strategic road improvements could promote agricultural development with relatively modest environmental costs, and 'conflict areas' where road building could have sizeable benefits for agriculture but with serious environmental damage. Our plan provides a template for proactively zoning and prioritizing roads during the most explosive era of road expansion in human history.


Assuntos
Conservação dos Recursos Naturais , Política Ambiental , Animais , Biodiversidade , Geografia , Cooperação Internacional , Modelos Teóricos
2.
Plant Pathol J ; 35(1): 63-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30828280

RESUMO

Winter wheat is susceptible to several fungal pathogens throughout the growing season and foliar fungicide application is one of the strategies used in the management of fungal diseases in winter wheat. However, for fungicides to be profitable, weather conditions conducive to fungal disease development should be present. To determine if winter wheat yield response to fungicide application at the flowering growth stage (Feekes 10.5.1) was related to the growing season precipitation, grain yield from fungicide treated plots was compared to non-treated plots for 19 to 30 hard red winter wheat cultivars planted at 8 site years from 2011 through 2015. At all locations, Prothioconazole + Tebuconazole or Tebuconazole alone was applied at flowering timing for the fungicide treated plots. Grain yield response (difference between treated and non-treated) ranged from 66-696 kg/ha across years and locations. Grain yield response had a positive and significant linear relationship with cumulative rainfall in May through June for the mid and top grain yield ranked cultivars (R2=54%, 78%, respectively) indicating that a higher amount of accumulated rainfall in this period increased chances of getting a higher yield response from fungicide application. Cultivars treated with a fungicide had slightly higher protein content (up to 0.5%) compared to non-treated. These results indicate that application of fungicides when there is sufficient moisture in May and June may increase chances of profitability from fungicide application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA