RESUMO
In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect1,2. Modified ribonucleotides are commonly incorporated into therapeutic IVT mRNAs to decrease their innate immunogenicity3-5, but their effects on mRNA translation fidelity have not been fully explored. Here we demonstrate that incorporation of N1-methylpseudouridine into mRNA results in +1 ribosomal frameshifting in vitro and that cellular immunity in mice and humans to +1 frameshifted products from BNT162b2 vaccine mRNA translation occurs after vaccination. The +1 ribosome frameshifting observed is probably a consequence of N1-methylpseudouridine-induced ribosome stalling during IVT mRNA translation, with frameshifting occurring at ribosome slippery sequences. However, we demonstrate that synonymous targeting of such slippery sequences provides an effective strategy to reduce the production of frameshifted products. Overall, these data increase our understanding of how modified ribonucleotides affect the fidelity of mRNA translation, and although there are no adverse outcomes reported from mistranslation of mRNA-based SARS-CoV-2 vaccines in humans, these data highlight potential off-target effects for future mRNA-based therapeutics and demonstrate the requirement for sequence optimization.
Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Pseudouridina , RNA Mensageiro , Animais , Humanos , Camundongos , Vacina BNT162/efeitos adversos , Vacina BNT162/genética , Vacina BNT162/imunologia , Mudança da Fase de Leitura do Gene Ribossômico/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pseudouridina/análogos & derivados , Pseudouridina/metabolismo , Ribossomos/metabolismo , Biossíntese de ProteínasRESUMO
During the translation surveillance mechanism known as ribosome-associated quality control, the ASC-1 complex (ASCC) disassembles ribosomes stalled on the mRNA. Here, we show that there are two distinct classes of stalled ribosome. Ribosomes stalled by translation elongation inhibitors or methylated mRNA are short lived in human cells because they are split by the ASCC. In contrast, although ultraviolet light and 4-nitroquinoline 1-oxide induce ribosome stalling by damaging mRNA, and the ASCC is recruited to these stalled ribosomes, we found that they are refractory to the ASCC. Consequently, unresolved UV- and 4NQO-stalled ribosomes persist in human cells. We show that ribosome stalling activates cell-cycle arrest, partly through ZAK-p38MAPK signaling, and that this cell-cycle delay is prolonged when the ASCC cannot resolve stalled ribosomes. Thus, we propose that the sensitivity of stalled ribosomes to the ASCC influences the kinetics of stall resolution, which in turn controls the adaptive stress response.
Assuntos
Dano ao DNA , Ribossomos , Humanos , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismoRESUMO
Efforts to define serological correlates of protection against COVID-19 have been hampered by the lack of a simple, scalable, standardised assay for SARS-CoV-2 infection and antibody neutralisation. Plaque assays remain the gold standard, but are impractical for high-throughput screening. In this study, we show that expression of viral proteases may be used to quantitate infected cells. Our assays exploit the cleavage of specific oligopeptide linkers, leading to the activation of cell-based optical biosensors. First, we characterise these biosensors using recombinant SARS-CoV-2 proteases. Next, we confirm their ability to detect viral protease expression during replication of authentic virus. Finally, we generate reporter cells stably expressing an optimised luciferase-based biosensor, enabling viral infection to be measured within 24 h in a 96- or 384-well plate format, including variants of concern. We have therefore developed a luminescent SARS-CoV-2 reporter cell line, and demonstrated its utility for the relative quantitation of infectious virus and titration of neutralising antibodies.
Assuntos
Técnicas Biossensoriais/métodos , Teste para COVID-19/métodos , COVID-19/virologia , Medições Luminescentes/métodos , Peptídeo Hidrolases/análise , SARS-CoV-2/enzimologia , Proteínas Virais/análise , COVID-19/diagnóstico , Linhagem Celular , Humanos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação ViralRESUMO
Diagnostic testing continues to be an integral component of the strategy to contain the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) global pandemic, the causative agent of Coronavirus Disease 2019 (COVID-19). The SARS-CoV-2 genome encodes the 3C-like protease (3CLpro) which is essential for coronavirus replication. This study adapts an in vitro colorimetric gold nanoparticle (AuNP) based protease assay to specifically detect the activity of SARS-CoV-2 3CLpro as a purified recombinant protein and as a cellular protein exogenously expressed in HEK293T human cells. We also demonstrate that the specific sensitivity of the assay for SARS-CoV-2 3CLpro can be improved by use of an optimised peptide substrate and through hybrid dimerisation with inactive 3CLpro mutant monomers. These findings highlight the potential for further development of the AuNP protease assay to detect SARS-CoV-2 3CLpro activity as a novel, accessible and cost-effective diagnostic test for SARS-CoV-2 infection at the point-of-care. Importantly, this versatile assay could also be easily adapted to detect specific protease activity associated with other viruses or diseases conditions.
Assuntos
COVID-19 , Nanopartículas Metálicas , Antivirais , COVID-19/diagnóstico , Colorimetria , Proteases 3C de Coronavírus , Ouro , Células HEK293 , Humanos , Peptídeo Hidrolases , Inibidores de Proteases , SARS-CoV-2RESUMO
In vitro transcribed, modified messenger RNAs (IVTmRNAs) have been used to vaccinate billions of individuals against the SARS-CoV-2 virus, and are currently being developed for many additional therapeutic applications. IVTmRNAs must be translated into proteins with therapeutic activity by the same cellular machinery that also translates native endogenous transcripts. However, different genesis pathways and routes of entry into target cells as well as the presence of modified nucleotides mean that the way in which IVTmRNAs engage with the translational machinery, and the efficiency with which they are being translated, differs from native mRNAs. This review summarises our current knowledge of commonalities and differences in translation between IVTmRNAs and cellular mRNAs, which is key for the development of future design strategies that can generate IVTmRNAs with improved activity in therapeutic applications.
RESUMO
Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.
Assuntos
COVID-19 , Imunidade Humoral , Humanos , Inibidores de Checkpoint Imunológico , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Complexo Antígeno-Anticorpo , Anticorpos AntiviraisRESUMO
Obesity is associated with an increased risk of severe Coronavirus Disease 2019 (COVID-19) infection and mortality. COVID-19 vaccines reduce the risk of serious COVID-19 outcomes; however, their effectiveness in people with obesity is incompletely understood. We studied the relationship among body mass index (BMI), hospitalization and mortality due to COVID-19 among 3.6 million people in Scotland using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. We found that vaccinated individuals with severe obesity (BMI > 40 kg/m2) were 76% more likely to experience hospitalization or death from COVID-19 (adjusted rate ratio of 1.76 (95% confidence interval (CI), 1.60-1.94). We also conducted a prospective longitudinal study of a cohort of 28 individuals with severe obesity compared to 41 control individuals with normal BMI (BMI 18.5-24.9 kg/m2). We found that 55% of individuals with severe obesity had unquantifiable titers of neutralizing antibody against authentic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus compared to 12% of individuals with normal BMI (P = 0.0003) 6 months after their second vaccine dose. Furthermore, we observed that, for individuals with severe obesity, at any given anti-spike and anti-receptor-binding domain (RBD) antibody level, neutralizing capacity was lower than that of individuals with a normal BMI. Neutralizing capacity was restored by a third dose of vaccine but again declined more rapidly in people with severe obesity. We demonstrate that waning of COVID-19 vaccine-induced humoral immunity is accelerated in individuals with severe obesity. As obesity is associated with increased hospitalization and mortality from breakthrough infections, our findings have implications for vaccine prioritization policies.
Assuntos
COVID-19 , Obesidade Mórbida , Humanos , Vacinas contra COVID-19 , Estudos Longitudinais , Estudos Prospectivos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Obesidade/epidemiologia , Anticorpos Neutralizantes , Anticorpos Antivirais , VacinaçãoRESUMO
A new study has identified genes that protect Caenorhabditis elegans from hypoxic stress. Genomic approaches and whole-organism proteomics reveal a regulatory interaction between a threonyl-tRNA synthetase and ribosome biogenesis that modulates global translation and hypoxic sensitivity.
Assuntos
Aminoacil-tRNA Sintetases , Treonina-tRNA Ligase , Aminoacil-tRNA Sintetases/genética , Animais , Caenorhabditis elegans/genética , Hipóxia/genética , RNA de Transferência/genéticaRESUMO
Following cell stress, a wide range of molecular pathways are initiated to orchestrate the stress response and enable adaptation to an environmental or intracellular perturbation. The post-transcriptional regulation strategies adopted during the stress response result in a substantial reorganization of gene expression, designed to prepare the cell for either acclimatization or programmed death, depending on the nature and intensity of the stress. Fundamental to the stress response is a rapid repression of global protein synthesis, commonly mediated by phosphorylation of translation initiation factor eIF2α. Recent structural and biochemical information have added unprecedented detail to our understanding of the molecular mechanisms underlying this regulation. During protein synthesis inhibition, the translation of stress-specific mRNAs is nonetheless enhanced, often through the interaction between RNA-binding proteins and specific RNA regulatory elements. Recent studies investigating the unfolded protein response (UPR) provide some important insights into how posttranscriptional events are spatially and temporally fine-tuned in order to elicit the most appropriate response and to coordinate the transition from an early, acute stage into the chronic state of adaptation. Importantly, cancer cells are known to hi-jack adaptive stress response pathways, particularly the UPR, to survive and proliferate in the unfavorable tumor environment. In this review, we consider the implications of recent research into stress-dependent post-transcriptional regulation and make the case for the exploration of the stress response as a strategy to identify novel targets in the development of cancer therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Mechanisms > Translation Regulation.