Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(1): 379-388, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30425097

RESUMO

Perilipin 2 (PLIN2) is a major lipid droplet (LD)-associated protein that regulates intracellular lipid homeostasis and LD formation. Under lipid-deprived conditions, the LD-unbound (free) form of PLIN2 is eliminated in the cytosol by an as yet unknown ubiquitin (Ub)-proteasome pathway that is associated with the N-terminal or near N-terminal residues of the protein. Here, using HeLa, HEK293T, and HepG2 human cell lines, cycloheximide chase, in vivo ubiquitylation, split-Ub yeast two-hybrid, and chemical cross-linking-based reciprocal co-immunoprecipitation assays, we found that TEB4 (MARCH6), an E3 Ub ligase and recognition component of the Ac/N-end rule pathway, directly targets the N-terminal acetyl moiety of Nα-terminally acetylated PLIN2 for its polyubiquitylation and degradation by the 26S proteasome. We also show that the TEB4-mediated Ac/N-end rule pathway reduces intracellular LD accumulation by degrading PLIN2. Collectively, these findings identify PLIN2 as a substrate of the Ac/N-end rule pathway and indicate a previously unappreciated role of the Ac/N-end rule pathway in LD metabolism.


Assuntos
Gotículas Lipídicas/metabolismo , Perilipina-2/metabolismo , Proteólise , Ubiquitinação , Acetilação , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Perilipina-2/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Cell Rep ; 42(7): 112746, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421621

RESUMO

The metabolic prohormone pro-opiomelanocortin (POMC) is generally translocated into the endoplasmic reticulum (ER) for entry into the secretory pathway. Patients with mutations within the signal peptide (SP) of POMC or its adjoining segment develop metabolic disorders. However, the existence, metabolic fate, and functional outcomes of cytosol-retained POMC remain unclear. Here, we show that SP-uncleaved POMC is produced in the cytosol of POMC neuronal cells, thus inducing ER stress and ferroptotic cell death. Mechanistically, the cytosol-retained POMC sequesters the chaperone Hspa5 and subsequently accelerates degradation of the glutathione peroxidase Gpx4, a core regulator of ferroptosis, via the chaperone-mediated autophagy. We also show that the Marchf6 E3 ubiquitin ligase mediates the degradation of cytosol-retained POMC, thereby preventing ER stress and ferroptosis. Furthermore, POMC-Cre-mediated Marchf6-deficient mice exhibit hyperphagia, reduced energy expenditure, and weight gain. These findings suggest that Marchf6 is a critical regulator of ER stress, ferroptosis, and metabolic homeostasis in POMC neurons.


Assuntos
Estresse do Retículo Endoplasmático , Ferroptose , Neurônios , Ubiquitina-Proteína Ligases , Animais , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Cell Biol ; 24(8): 1239-1251, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941365

RESUMO

Ferroptosis is a unique form of cell death caused by excessive iron-dependent lipid peroxidation. The level of the anabolic reductant NADPH is a biomarker of ferroptosis sensitivity. However, specific regulators that detect cellular NADPH levels, thereby modulating downstream ferroptosis cascades, are largely unknown. We show here that the transmembrane endoplasmic reticulum MARCHF6 E3 ubiquitin ligase recognizes NADPH through its C-terminal regulatory region. This interaction upregulates the E3 ligase activity of MARCHF6, thus downregulating ferroptosis. We also found that MARCHF6 mediates the degradation of the key ferroptosis effectors ACSL4 and p53. Furthermore, inhibiting ferroptosis rescued the growth of MARCHF6-deficient tumours and peri-natal lethality of Marchf6-/- mice. Together, these findings identify MARCHF6 as a previously unknown NADPH sensor in the ubiquitin system and a crucial regulator of ferroptosis.


Assuntos
Ferroptose , Animais , Morte Celular , Ferroptose/genética , Peroxidação de Lipídeos/fisiologia , Camundongos , NADP/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Exp Mol Med ; 50(7): 1-8, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054456

RESUMO

Nα-terminal acetylation (Nt-acetylation) occurs very frequently and is found in most proteins in eukaryotes. Despite the pervasiveness and universality of Nt-acetylation, its general functions in terms of physiological outcomes remain largely elusive. However, several recent studies have revealed that Nt-acetylation has a significant impact on protein stability, activity, folding patterns, cellular localization, etc. In addition, Nt-acetylation marks specific proteins for degradation by a branch of the N-end rule pathway, a subset of the ubiquitin-mediated proteolytic system. The N-end rule associates a protein's in vivo half-life with its N-terminal residue or modifications on its N-terminus. This review provides a current understanding of intracellular proteolysis control by Nt-acetylation and the N-end rule pathway.


Assuntos
Acetiltransferases N-Terminal/metabolismo , Proteólise , Ubiquitinação , Acetilação , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA