Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 20(11): e3001809, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36413526

RESUMO

This Formal Comment uses re-analysis after appropriate corrections to claim that the extreme decline effect reported by Clements et al. is a statistical artefact caused by the way they corrected for zeros in percentage data, exacerbated by errors in data compilation, selective data inclusions and missing studies with strong effects.


Assuntos
Peixes , Água do Mar , Animais , Concentração de Íons de Hidrogênio , Artefatos , Oceanos e Mares
2.
BMC Genomics ; 25(1): 635, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918719

RESUMO

BACKGROUND: The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS: We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS: This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.


Assuntos
Comportamento Animal , Dióxido de Carbono , Transcriptoma , Animais , Comportamento Animal/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Água do Mar/química , Concentração de Íons de Hidrogênio , Decapodiformes/genética , Perfilação da Expressão Gênica , Cefalópodes/genética , Oceanos e Mares , Acidificação dos Oceanos
3.
J Anim Ecol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926938

RESUMO

Climate change stressors are progressively simplifying biogenic habitats in the terrestrial and marine realms, and consequently altering the structure of associated species communities. Here, we used a volcanic CO2 seep in Papua New Guinea to test in situ if altered reef architecture due to ocean acidification reshuffles associated fish assemblages. We observed replacement of branching corals by massive corals at the seep, with simplified coral architectural complexity driving abundance declines between 60% and 86% for an assemblage of damselfishes associated with branching corals. An experimental test of habitat preference for a focal species indicated that acidification does not directly affect habitat selection behaviour, with changes in habitat structural complexity consequently appearing to be the stronger driver of assemblage reshuffling. Habitat health affected anti-predator behaviour, with P. moluccensis becoming less bold on dead branching corals relative to live branching corals, irrespective of ocean acidification. We conclude that coral reef fish assemblages are likely to be more sensitive to changes in habitat structure induced by increasing pCO2 than any direct effects on behaviour, indicating that changes in coral architecture and live cover may act as important mediators of reef fish community structures in a future ocean.

4.
Glob Chang Biol ; 28(9): 3007-3022, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35238117

RESUMO

Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2  seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2 , thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.


Assuntos
Dióxido de Carbono , Água do Mar , Animais , Dióxido de Carbono/análise , Recifes de Corais , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
5.
J Fish Biol ; 101(4): 996-1007, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35818109

RESUMO

Body size influences many life-history traits, with small-bodied animals tending to have short life spans, high mortality and greater reproductive effort early in life. In this study, the authors investigated the life-history traits and reproductive strategies of three small-bodied coral reef gobies of the genus Trimma: Trimma benjamini, Trimma capostriatum and Trimma yanoi. The authors found all Trimma species studied attained a small body size of <25 mm, had a short life span of <140 days and experienced high estimated daily mortality of 3.0%-6.7%. Furthermore, the pelagic larval phase accounted for 25.3%-28.5% of the maximum life span, and maturation occurred between 74.1 and 82.1 days at 15.2-15.8 mm, leaving only 35%-43% of the total life span as a reproductively viable adult. All mature individuals had gonad structures consistent with bidirectional sex change, with bisexual gonads including both ovarian and testicular portions separated by a thin wall of connective tissue. In the female and male phases, only ovaries or testes were mature, whereas gonadal tissue of the non-active sex remained. One T. benjamini individual and one T. yanoi individual had ovarian and testicular tissue active simultaneously. The results of this study highlight the life-history challenges small CRFs face on their path to reproduction and reproductive strategies that could be beneficial in fishes with high and unpredictable mortality and short reproductive life spans.


Assuntos
Recifes de Corais , Perciformes , Feminino , Masculino , Animais , Longevidade , Reprodução , Peixes
6.
Proc Biol Sci ; 288(1964): 20211931, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34875194

RESUMO

Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus, individual variation in behavioural tolerance to elevated pCO2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-sensitive mothers and vice versa, reared their offspring at control and elevated pCO2 levels, and compared the juveniles' brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype's influence on offspring molecular phenotype.


Assuntos
Recifes de Corais , Perciformes , Animais , Dióxido de Carbono , Peixes/fisiologia , Concentração de Íons de Hidrogênio , Perciformes/genética , Água do Mar/química
7.
Mol Ecol ; 30(20): 5105-5118, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34402113

RESUMO

Environmental partial pressure of CO2 (pCO2 ) variation can modify the responses of marine organisms to ocean acidification, yet the underlying mechanisms for this effect remain unclear. On coral reefs, environmental pCO2  fluctuates on a regular day-night cycle. Effects of future ocean acidification on coral reef fishes might therefore depend on their response to this diel cycle of pCO2 . To evaluate the effects on the brain molecular response, we exposed two common reef fishes (Acanthochromis polyacanthus and Amphiprion percula) to two projected future pCO2  levels (750 and 1,000 µatm) under both stable and diel fluctuating conditions. We found a common signature to stable elevated pCO2 for both species, which included the downregulation of immediate early genes, indicating lower brain activity. The transcriptional programme was more strongly affected by higher average pCO2 in a stable treatment than for fluctuating treatments, but the largest difference in molecular response was between stable and fluctuating pCO2 treatments. This indicates that a response to a change in environmental pCO2 conditions is different for organisms living in a fluctuating than in stable environments. This differential regulation was related to steroid hormones and circadian rhythm (CR). Both species exhibited a marked difference in the expression of CR genes among pCO2 treatments, possibly accommodating a more flexible adaptive approach in the response to environmental changes. Our results suggest that environmental pCO2  fluctuations might enable reef fishes to phase-shift their clocks and anticipate pCO2 changes, thereby avoiding impairments and more successfully adjust to ocean acidification conditions.


Assuntos
Recifes de Corais , Água do Mar , Animais , Dióxido de Carbono/análise , Peixes , Concentração de Íons de Hidrogênio , Oceanos e Mares
8.
J Exp Biol ; 224(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100547

RESUMO

Projected future carbon dioxide (CO2) levels in the ocean can alter marine animal behaviours. Disrupted functioning of γ-aminobutyric acid type A (GABAA) receptors (ligand-gated chloride channels) is suggested to underlie CO2-induced behavioural changes in fish. However, the mechanisms underlying behavioural changes in marine invertebrates are poorly understood. We pharmacologically tested the role of GABA-, glutamate-, acetylcholine- and dopamine-gated chloride channels in CO2-induced behavioural changes in a cephalopod, the two-toned pygmy squid (Idiosepius pygmaeus). We exposed squid to ambient (∼450 µatm) or elevated (∼1000 µatm) CO2 for 7 days. Squid were treated with sham, the GABAA receptor antagonist gabazine or the non-specific GABAA receptor antagonist picrotoxin, before measurement of conspecific-directed behaviours and activity levels upon mirror exposure. Elevated CO2 increased conspecific-directed attraction and aggression, as well as activity levels. For some CO2-affected behaviours, both gabazine and picrotoxin had a different effect at elevated compared with ambient CO2, providing robust support for the GABA hypothesis within cephalopods. In another behavioural trait, picrotoxin but not gabazine had a different effect in elevated compared with ambient CO2, providing the first pharmacological evidence, in fish and marine invertebrates, for altered functioning of ligand-gated chloride channels, other than the GABAAR, underlying CO2-induced behavioural changes. For some other behaviours, both gabazine and picrotoxin had a similar effect in elevated and ambient CO2, suggesting altered function of ligand-gated chloride channels was not responsible for these CO2-induced changes. Multiple mechanisms may be involved, which could explain the variability in the CO2 and drug treatment effects across behaviours.


Assuntos
Dióxido de Carbono , Cefalópodes , Animais , Canais de Cloreto , Cloretos , Ligantes , Receptores de GABA-A
10.
J Exp Biol ; 222(Pt 16)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31444281

RESUMO

Marine heatwaves, which are increasing in frequency, duration and intensity owing to climate change, are an imminent threat to marine ecosystems. On coral reefs, heatwave conditions often coincide with periods of peak recruitment of juvenile fishes and exposure to elevated temperature may affect their development. However, whether differences in the duration of high temperature exposure have effects on individual performance is unknown. We exposed juvenile spiny damselfish, Acanthochromis polyacanthus, to increasing lengths of time (3, 7, 30 and 108 days post-hatching) of elevated temperature (+2°C). After 108 days, we measured escape performance at present-day control and elevated temperatures, standard length, mass and critical thermal maximum. Using a Bayesian approach, we show that 30 days or more exposure to +2°C leads to improved escape performance, irrespective of performance temperature, possibly owing to developmental effects of high temperature on muscle development and/or anaerobic metabolism. Continued exposure to elevated temperature for 108 days caused a reduction in body size compared with the control, but not in fish exposed to high temperature for 30 days or less. By contrast, exposure to elevated temperatures for any length of time had no effect on critical thermal maximum, which, combined with previous work, suggests a short-term physiological constraint of ∼37°C in this species. Our study shows that extended exposure to increased temperature can affect the development of juvenile fishes, with potential immediate and future consequences for individual performance.


Assuntos
Recifes de Corais , Peixes/crescimento & desenvolvimento , Temperatura Alta , Características de História de Vida , Animais , Teorema de Bayes , Aquecimento Global , Temperatura Alta/efeitos adversos , Fatores de Tempo
11.
Biol Lett ; 15(2): 20180724, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958130

RESUMO

Parental effects have been shown to buffer the negative effects of within-generation exposure to ocean acidification (OA) conditions on the offspring of shallow water marine organisms. However, it remains unknown if parental effects will be impacted by the presence of diel CO2 cycles that are prevalent in many shallow water marine habitats. Here, we examined the effects that parental exposure to stable elevated (1000 µatm) and diel-cycling elevated (1000 ± 300 µatm) CO2 had on the survival and growth of juvenile coral reef anemonefish, Amphiprion melanopus. Juvenile survival was unaffected by within-generation exposure to either elevated CO2 treatment but was significantly increased (8%) by parental exposure to diel-cycling elevated CO2. Within-generation exposure to stable elevated CO2 caused a significant reduction in juvenile growth (10.7-18.5%); however, there was no effect of elevated CO2 on growth when diel CO2 cycles were present. Parental exposure to stable elevated CO2 also ameliorated the negative effects of elevated CO2 on juvenile growth, and parental exposure to diel CO2 cycles did not alter the effects of diel CO2 cycles on juveniles. Our results demonstrate that within-generation exposure to diel-cycling elevated CO2 and parental exposure to stable elevated CO2 had similar outcomes on juvenile condition. This study illustrates the importance of considering natural CO2 cycles when predicting the long-term impacts of OA on marine ecosystems.


Assuntos
Dióxido de Carbono , Recifes de Corais , Animais , Ecossistema , Humanos , Concentração de Íons de Hidrogênio , Pais , Água do Mar
12.
Environ Sci Technol ; 53(23): 14001-14009, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702903

RESUMO

The understanding of the detection threshold and behavioral response of fishes in response to crude oil is critical to predicting the effects of oil spills on wild fish populations. The Deepwater Horizon oil spill released approximately 4.9 million barrels of crude oil into the northern Gulf of Mexico in 2010, overlapping spatially and temporally with the habitat of many pelagic fish species. Yet, it is unknown whether highly migratory species, such as mahi-mahi (Coryphaena hippurus), might detect and avoid oil contaminated waters. We tested the ability of control and oil-exposed juvenile mahi-mahi (15-45 mm) to avoid two dilutions of crude oil in a two-channel flume. Control fish avoided the higher concentration (27.1 µg/L Σ50PAH), while oil-exposed (24 h, 18.0 µg/L Σ50PAH) conspecifics did not. Electro-olfactogram (EOG) data demonstrated that both control and oil-exposed (24 h, 14.5 µg/L Σ50PAH) juvenile mahi-mahi (27-85 mm) could detect crude oil as an olfactory cue and that oil-exposure did not affect the EOG amplitude or duration in response to oil or other cues. These results show that a brief oil exposure impairs the ability of mahi-mahi to avoid oil and suggests that this alteration likely results from injury to higher order central nervous system processing rather than impaired olfactory physiology.


Assuntos
Perciformes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Aprendizagem da Esquiva , Embrião não Mamífero , Golfo do México
13.
Environ Sci Technol ; 53(18): 10993-11001, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31449401

RESUMO

In fishes, olfactory cues evoke behavioral responses that are crucial to survival; however, the receptors, olfactory sensory neurons, are directly exposed to the environment and are susceptible to damage from aquatic contaminants. In 2010, 4.9 million barrels of crude oil were released into the northern Gulf of Mexico from the Deepwater Horizon disaster, exposing marine organisms to this environmental contaminant. We examined the ability of bicolor damselfish (Stegastes partitus), exposed to the water accommodated fraction (WAF) of crude oil, to respond to chemical alarm cue (CAC) using a two-channel flume. Control bicolor damselfish avoided CAC in the flume choice test, whereas WAF-exposed conspecifics did not. This lack of avoidance persisted following 8 days of control water conditions. We then examined the physiological response to CAC, brine shrimp rinse, bile salt, and amino acid cues using the electro-olfactogram (EOG) technique and found that WAF-exposed bicolor damselfish were less likely to detect CAC as an olfactory cue but showed no difference in EOG amplitude or duration compared to controls. These data indicate that a sublethal WAF exposure directly modifies detection and avoidance of CAC beyond the exposure period and may suggest reduced predator avoidance behavior in oil-exposed fish in the wild.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Golfo do México , Olfato
14.
Mol Ecol ; 27(22): 4516-4528, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30267545

RESUMO

Global warming will have far-reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However, the effects of a gradual temperature increase across generations remain unknown. In the present study, we analysed metabolic and molecular traits in the damselfish Acanthochromis polyacanthus that were exposed to +1.5°C in the first generation and +3.0°C in the second (Step +3.0°C). This treatment of stepwise warming was compared to fish reared at current-day temperatures (Control), second-generation fish of control parents reared at +3.0°C (Developmental +3.0°C) and fish exposed to elevated temperatures for two generations (Transgenerational +1.5°C and Transgenerational +3.0°C). Hepatosomatic index, oxygen consumption and liver gene expression were compared in second-generation fish of the multiple treatments. Hepatosomatic index increased in fish that developed at +3.0°C, regardless of the parental temperature. Routine oxygen consumption of Step +3.0°C fish was significantly higher than Control; however, their aerobic scope recovered to the same level as Control fish. Step +3.0°C fish exhibited significant upregulation of genes related to mitochondrial activity and energy production, which could be associated with their increased metabolic rates. These results indicate that restoration of aerobic scope is possible when fish experience gradual thermal increase across multiple generations, but the metabolic and molecular responses are different from fish reared at the same elevated thermal conditions in successive generations.


Assuntos
Aclimatação/genética , Aquecimento Global , Perciformes/genética , Temperatura , Animais , Recifes de Corais , Expressão Gênica , Perciformes/fisiologia , Fenótipo
15.
Glob Chang Biol ; 24(6): 2585-2596, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29460508

RESUMO

There is increasing evidence that projected near-future carbon dioxide (CO2 ) levels can alter predator avoidance behaviour in marine invertebrates, yet little is known about the possible effects on predatory behaviours. Here we tested the effects of elevated CO2 on the predatory behaviours of two ecologically distinct cephalopod species, the pygmy squid, Idiosepius pygmaeus, and the bigfin reef squid, Sepioteuthis lessoniana. Both species exhibited an increased latency to attack and altered body pattern choice during the attack sequence at elevated CO2 . I. pygmaeus also exhibited a 20% decrease in predation rate, an increased striking distance, and reduced preference for attacking the posterior end of prey at elevated CO2 . Elevated CO2 increased activity levels of S. lessoniana comparable to those previously shown in I. pygmaeus, which could adversely affect their energy budget and increase their potential to be preyed upon. The effects of elevated CO2 on predatory behaviours, predation strategies and activity levels of cephalopods reported here could have far-reaching consequences in marine ecosystems due to the ecological importance of cephalopods in the marine food web.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Decapodiformes/fisiologia , Comportamento Predatório , Água do Mar/química , Animais , Feminino , Masculino
16.
Glob Chang Biol ; 24(1): 13-34, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024256

RESUMO

Phenotypic plasticity, both within and across generations, is an important mechanism that organisms use to cope with rapid climate change. While an increasing number of studies show that plasticity across generations (transgenerational plasticity or TGP) may occur, we have limited understanding of key aspects of TGP, such as the environmental conditions that may promote it, its relationship to within-generation plasticity (WGP) and its role in evolutionary potential. In this review, we consider how the detection of TGP in climate change experiments is affected by the predictability of environmental variation, as well as the timing and magnitude of environmental change cues applied. We also discuss the need to design experiments that are able to distinguish TGP from selection and TGP from WGP in multigenerational experiments. We conclude by suggesting future research directions that build on the knowledge to date and admit the limitations that exist, which will depend on the way environmental change is simulated and the type of experimental design used. Such an approach will open up this burgeoning area of research to a wider variety of organisms and allow better predictive capacity of the role of TGP in the response of organisms to future climate change.


Assuntos
Evolução Biológica , Mudança Climática , Animais , Humanos , Temperatura
17.
Glob Chang Biol ; 24(9): 4368-4385, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29790239

RESUMO

Ocean warming and acidification are serious threats to marine life; however, their individual and combined effects on large pelagic and predatory fishes are poorly understood. We determined the effects of projected future temperature and carbon dioxide (CO2 ) levels on survival, growth, morphological development and swimming performance on the early life stages of a large circumglobal pelagic fish, the yellowtail kingfish Seriola lalandi. Eggs, larvae and juveniles were reared in cross-factored treatments of temperature (21 and 25°C) and pCO2 (500 and 985 µatm) from fertilisation to 25 days post hatching (dph). Temperature had the greatest effect on survival, growth and development. Survivorship was lower, but growth and morphological development were faster at 25°C, with surviving fish larger and more developed at 1, 11 and 21 dph. Elevated pCO2 affected size at 1 dph, but not at 11 or 21 dph, and did not affect survival or morphological development. Elevated temperature and pCO2 had opposing effects on swimming performance at 21 dph. Critical swimming speed (Ucrit ) was increased by elevated temperature but reduced by elevated pCO2 . Additionally, elevated temperature increased the proportion of individuals that responded to a startle stimulus, reduced latency to respond and increased maximum escape speed, potentially due to the more advanced developmental stage of juveniles at 25°C. By contrast, elevated pCO2 reduced the distance moved and average speed in response to a startle stimulus. Our results show that higher temperature is likely to be the primary driver of global change impacts on kingfish early life history; however, elevated pCO2 could affect critical aspects of swimming performance in this pelagic species. Our findings will help parameterise and structure fisheries population dynamics models and improve projections of impacts to large pelagic fishes under climate change scenarios to better inform adaptation and mitigation responses.


Assuntos
Dióxido de Carbono/efeitos adversos , Temperatura Alta/efeitos adversos , Perciformes/fisiologia , Água do Mar/química , Natação , Animais , Oceanos e Mares , Perciformes/crescimento & desenvolvimento
18.
Proc Biol Sci ; 284(1857)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659450

RESUMO

Ocean acidification and warming, driven by anthropogenic CO2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effects of short-term exposure to elevated CO2 and temperature on the predator-prey interactions of a common pair of coral reef fishes (Pomacentrus wardi and its predator, Pseudochromis fuscus). We found that predator success increased following independent exposure to high temperature and elevated CO2 Overall, high temperature had an overwhelming effect on the escape behaviour of the prey compared with the combined exposure to elevated CO2 and high temperature or the independent effect of elevated CO2 Exposure to high temperatures led to an increase in attack and predation rates. By contrast, we observed little influence of elevated CO2 on the behaviour of the predator, suggesting that the attack behaviour of P. fuscus was robust to this environmental change. This is the first study to address how the kinematics and swimming performance at the basis of predator-prey interactions may change in response to concurrent exposure to elevated CO2 and high temperatures and represents an important step to forecasting the responses of interacting species to climate change.


Assuntos
Dióxido de Carbono/química , Mudança Climática , Recifes de Corais , Peixes/fisiologia , Comportamento Predatório , Animais , Água do Mar/química , Temperatura
20.
Glob Chang Biol ; 23(1): 307-317, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27469983

RESUMO

Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness-related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild-caught breeding pairs were reared for two generations at current-day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.


Assuntos
Aclimatação , Mudança Climática , Recifes de Corais , Peixes , Adaptação Fisiológica , Animais , Tamanho Corporal , Peixes/genética , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA