Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764600

RESUMO

Nitrogen-vacancy (NV) and other color centers in diamond have attracted much attention as non-photobleaching quantum emitters and quantum sensors. Since microfabrication in bulk diamonds is technically difficult, embedding nanodiamonds with color centers into designed structures is a way to integrate these quantum emitters into photonic devices. In this study, we demonstrate a method to incorporate fluorescent nanodiamonds into engineered microstructures using two-photon polymerization (2PP). We studied the optimal concentration of nanodiamonds in the photoresist to achieve structures with at least one fluorescent NV center and good structural and optical quality. Fluorescence and Raman spectroscopy measurements were used to confirm the presence and location of the nanodiamonds, while absorbance measurements assessed scattering losses at higher concentrations. Our results show the feasibility of fabricating microstructures embedded within fluorescent nanodiamonds via 2PP for photonics and quantum technology applications.

2.
Phys Rev E ; 106(6-1): 064123, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671193

RESUMO

Considering the paradigmatic driven Brownian motion, we perform extensive numerical analysis on the performance of optimal linear-response processes far from equilibrium. We focus on the overdamped regime where exact optimal processes are known analytically and most experiments operate. This allows us to compare the optimal processes obtained in linear response and address their relevance to experiments using realistic parameter values from experiments with optical tweezers. Our results help assess the accuracy of perturbative methods in calculating the irreversible work for cases where the exact solution might be difficult to access. For that, we present a performance metric comparing the approximate optimal solution to the exact one. Our main result is that optimal linear-response processes can perform surprisingly well, even far from where they were expected.

3.
Front Chem ; 10: 879524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034664

RESUMO

Given the remarkable developments in synthetic control over chemical and physical properties of colloidal particles, it is interesting to see how stochastic thermodynamics studies may be performed with new, surrogate, or hybrid model systems. In the present work, we apply stochastic dynamics and nonlinear optical light-matter interaction simulations to study nonequilibrium trajectories of individual Yb (III):Er (III) colloidal particles driven by two-dimensional dynamic optical traps. In addition, we characterize the role of fluctuations at the single-particle level by analyzing position trajectories and time-dependent upconversion emission intensities. By integrating these two complementary perspectives, we show how the methods developed here can be used to characterize rare events.

4.
Sci Rep ; 7(1): 14320, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085031

RESUMO

Although diamond photonics has driven considerable interest and useful applications, as shown in frequency generation devices and single photon emitters, fundamental studies on the third-order optical nonlinearities of diamond are still scarce, stalling the development of an integrated platform for nonlinear and quantum optics. The purpose of this paper is to contribute to those studies by measuring the spectra of two-photon absorption coefficient (ß) and the nonlinear index of refraction (n2) of diamond using femtosecond laser pulses, in a wide spectral range. These measurements show the magnitude of ß increasing from 0.07 to 0.23 cm/GW, as it approaches the bandgap energy, in the region from 3.18 to 4.77 eV (390-260 nm), whereas the n2 varies from zero to 1.7 × 10-19 m2/W in the full measured range, from 0.83-4.77 eV (1500-260 nm). The experimental results are compared with theoretical models for nonlinear absorption and refraction in indirect gap semiconductors, indicating the two-photon absorption as the dominant effect in the dispersion of the third-order nonlinear susceptibility. These data, together with optical Kerr gate measurements, also provided here, are of foremost relevance to the understanding of ultrafast optical processes in diamond and its nonlinear optical properties.

5.
Rev Sci Instrum ; 83(8): 083119, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22938286

RESUMO

Partial-transfer absorption imaging is a tool that enables optimal imaging of atomic clouds for a wide range of optical depths. In contrast to standard absorption imaging, the technique can be minimally destructive and can be used to obtain multiple successive images of the same sample. The technique involves transferring a small fraction of the sample from an initial internal atomic state to an auxiliary state and subsequently imaging that fraction absorptively on a cycling transition. The atoms remaining in the initial state are essentially unaffected. We demonstrate the technique, discuss its applicability, and compare its performance as a minimally destructive technique to that of phase-contrast imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA