Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 62(4): 912-922, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36746768

RESUMO

Transitions between motile and biofilm lifestyles are highly regulated and fundamental to microbial pathogenesis. H-NOX (heme-nitric oxide/oxygen-binding domain) is a key regulator of bacterial communal behaviors, such as biofilm formation. A predicted bifunctional cyclic di-GMP metabolizing enzyme, composed of diguanylate cyclase and phosphodiesterase (PDE) domains (avi_3097), is annotated downstream of an hnoX gene in Agrobacterium vitis S4. Here, we demonstrate that avH-NOX is a nitric oxide (NO)-binding hemoprotein that binds to and regulates the activity of avi_3097 (avHaCE; H-NOX-associated cyclic di-GMP processing enzyme). Kinetic analysis of avHaCE indicates a ∼four-fold increase in PDE activity in the presence of NO-bound avH-NOX. Biofilm analysis with crystal violet staining reveals that low concentrations of NO reduce biofilm growth in the wild-type A. vitis S4 strain, but the mutant ΔhnoX strain has no NO phenotype, suggesting that H-NOX is responsible for the NO biofilm phenotype in A. vitis. Together, these data indicate that avH-NOX enhances cyclic di-GMP degradation to reduce biofilm formation in response to NO in A. vitis.


Assuntos
Proteínas de Bactérias , Proteínas de Escherichia coli , Proteínas de Bactérias/química , Óxido Nítrico/metabolismo , Cinética , Proteínas de Escherichia coli/metabolismo , Biofilmes , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Biochemistry ; 59(47): 4488-4498, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190490

RESUMO

ZntA from Escherichia coli confers resistance to toxic concentrations of Pb2+, Zn2+, and Cd2+. It is a member of the P1B-ATPase transporter superfamily, which includes the human Cu+-transporting proteins ATP7A and ATP7B. P1B-type ATPases typically have a hydrophilic N-terminal metal-binding domain and eight transmembrane helices. A splice variant of ATP7B was reported, which has 100-fold higher night-specific expression in the pineal gland; it lacks the entire N-terminal domain and the first four transmembrane helices. Here, we report our findings with Δ231-ZntA, a similar truncation we created in ZntA. Δ231-ZntA has no in vivo and greatly reduced in vitro activity. It binds one metal ion per dimer at the transmembrane site, with a 15-19000-fold higher binding affinity, indicating highly significant changes in the dimer structure of Δ231-ZntA relative to that of ZntA. Cd2+ has the highest affinity for Δ231-ZntA, in contrast to ZntA, which has the highest affinity for Pb2+. Site-specific mutagenesis of the metal-binding residues, 392Cys, 394Cys, and 714Asp, showed that there is considerable flexibility at the metal-binding site, with any two of these three residues able to bind Zn2+ and Pb2+ unlike in ZntA. However, Cd2+ binds to only 392Cys and 714Asp, with 394Cys not involved in Cd2+ binding. Three-dimensional homology models show that there is a dramatic difference between the ZntA and Δ231-ZntA dimer structures, which help to explain these observations. Therefore, the first four transmembrane helices in ZntA and P1B-type ATPases play an important role in maintaining the correct dimer structure.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Catálise/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Metais/farmacologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Organismos Geneticamente Modificados , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , Estrutura Secundária de Proteína/fisiologia , Relação Estrutura-Atividade
3.
Biochemistry ; 58(48): 4827-4841, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31682418

RESUMO

Biofilms form when bacteria aggregate in a self-secreted exopolysaccharide matrix; they are resistant to antibiotics and implicated in disease. Nitric oxide (NO) is known to mediate biofilm formation in many bacteria via ligation to H-NOX (heme-NO/oxygen binding) domains. Most NO-responsive bacteria, however, lack H-NOX domain-containing proteins. We have identified another NO-sensing protein (NosP), which is predicted to be involved in two-component signaling and biofilm regulation in many species. Here, we demonstrate that NosP participates in the previously described H-NOX/NO-responsive multicomponent c-di-GMP signaling network in Shewanella oneidensis. Strains lacking either nosP or its co-cistronic kinase nahK (previously hnoS) produce immature biofilms, while hnoX and hnoK (kinase responsive to NO/H-NOX) mutants result in wild-type biofilm architecture. We demonstrate that NosP regulates the autophosphorylation activity of NahK as well as HnoK. HnoK and NahK have been shown to regulate three response regulators (HnoB, HnoC, and HnoD) that together comprise a NO-responsive multicomponent c-di-GMP signaling network. Here, we propose that NosP/NahK adds regulation on top of H-NOX/HnoK to modulate this c-di-GMP signaling network, and ultimately biofilm formation, by governing the flux of phosphate through both HnoK and NahK. In addition, it appears that NosP and H-NOX act to counter each other in a push-pull mechanism; NosP/NahK promotes biofilm formation through inhibition of H-NOX/HnoK signaling, which itself reduces the extent of biofilm formation. Addition of NO results in a reduction of c-di-GMP and biofilm formation, primarily through disinhibition of HnoK activity.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , GMP Cíclico/análogos & derivados , Óxido Nítrico/metabolismo , Shewanella/fisiologia , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Shewanella/genética , Transdução de Sinais
4.
J Am Chem Soc ; 134(4): 2044-6, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22257139

RESUMO

The H-NOX family of nitric oxide (NO) sensing proteins has received considerable attention because its members include the mammalian NO sensor, soluble guanylate cyclase. Despite this attention, the mechanism of signal transduction has not been elucidated. Structural studies of bacterial members of the family have revealed that the H-NOX heme cofactor is extremely distorted from planarity. Furthermore, it has been determined that heme distortion is maintained primarily by a conserved proline residue located in the proximal heme pocket. It has been suggested that changes in heme planarity may contribute to signal transduction. Here we demonstrate that heme flattening is, indeed, sufficient for signal transduction in the H-NOX family. Using our previously described H-NOX/diguanylate cyclase functional partners from Shewanella woodyi, we demonstrate that mutation of the conserved proline (P117 in SwH-NOX) to alanine, which results in heme flattening, has the same affect on phosphodiesterase activity as NO binding to wildtype SwH-NOX. This study demonstrates, for the first time, that heme flattening mimics the activated, NO-bound state of H-NOX and suggests that NO binding induces heme flattening as part of the signal transduction mechanism in the H-NOX family.


Assuntos
Guanilato Ciclase/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Guanilato Ciclase/química , Guanilato Ciclase/genética , Heme/química , Hemeproteínas/química , Hemeproteínas/genética , Modelos Moleculares , Óxido Nítrico/química , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Shewanella/enzimologia , Guanilil Ciclase Solúvel
5.
J Phys Chem B ; 120(24): 5351-8, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27229134

RESUMO

Transient absorption, resonance Raman, and vibrational coherence spectroscopies are used to investigate the mechanisms of NO and O2 binding to WT Tt H-NOX and its P115A mutant. Vibrational coherence spectra of the oxy complexes provide clear evidence for the enhancement of an iron-histidine mode near 217 cm(-1) following photoexcitation, which indicates that O2 can be dissociated in these proteins. However, the quantum yield of O2 photolysis is low, particularly in the wild type (≲3%). Geminate recombination of O2 and NO in both of these proteins is very fast (∼1.4 × 10(11) s(-1)) and highly efficient. We show that the distal heme pocket of the H-NOX system forms an efficient trap that limits the O2 off-rate and determines the overall affinity. The distal pocket hydrogen bond, which appears to be stronger in the P115A mutant, may help retard the O2 ligand from escaping into the solvent following either photoinduced or thermal dissociation. This, along with a strengthening of the Fe-O2 bond that is correlated with the significant heme ruffing and saddling distortions, explains the unusually high O2 affinity of WT Tt H-NOX and the even higher affinity found in the P115A mutant.


Assuntos
Proteínas de Bactérias/química , Guanilato Ciclase/química , Oxigênio/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Domínios Proteicos , Teoria Quântica , Análise Espectral Raman , Vibrio cholerae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA