Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(24): e2210113120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279279

RESUMO

Using scRNA-seq and microscopy, we describe a cell that is enriched in the lower airways of the developing human lung and identified by the unique coexpression of SCGB3A2/SFTPB/CFTR. To functionally interrogate these cells, we apply a single-cell barcode-based lineage tracing method, called CellTagging, to track the fate of SCGB3A2/SFTPB/CFTR cells during airway organoid differentiation in vitro. Lineage tracing reveals that these cells have a distinct differentiation potential from basal cells, giving rise predominantly to pulmonary neuroendocrine cells and a subset of multiciliated cells distinguished by high C6 and low MUC16 expression. Lineage tracing results are supported by studies using organoids and isolated cells from the lower noncartilaginous airway. We conclude that SCGB3A2/SFTPB/CFTR cells are enriched in the lower airways of the developing human lung and contribute to the epithelial diversity and heterogeneity in this region.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Pulmão , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células-Tronco/metabolismo , Diferenciação Celular , Linhagem da Célula , Organoides , Células Epiteliais/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L288-L298, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366541

RESUMO

Pompe disease is an autosomal recessive glycogen storage disease caused by mutations in the gene that encodes acid alpha-glucosidase (GAA)-an enzyme responsible for hydrolyzing lysosomal glycogen. GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption. Glycogen accumulation in skeletal muscles, motor neurons, and airway smooth muscle cells is known to contribute to respiratory insufficiency in Pompe disease. However, the impact of GAA deficiency on the distal alveolar type 1 and type 2 cells (AT1 and AT2) has not been evaluated. AT1 cells rely on lysosomes for cellular homeostasis so that they can maintain a thin barrier for gas exchange, whereas AT2 cells depend on lysosome-like structures (lamellar bodies) for surfactant production. Using a mouse model of Pompe disease, the Gaa-/- mouse, we investigated the consequences of GAA deficiency on AT1 and AT2 cells using histology, pulmonary function and mechanics, and transcriptional analysis. Histological analysis revealed increased accumulation of lysosomal-associated membrane protein 1 (LAMP1) in the Gaa-/- mice lungs. Furthermore, ultrastructural examination showed extensive intracytoplasmic vacuoles enlargement and lamellar body engorgement. Respiratory dysfunction was confirmed using whole body plethysmography and forced oscillometry. Finally, transcriptomic analysis demonstrated dysregulation of surfactant proteins in AT2 cells, specifically reduced levels of surfactant protein D in the Gaa-/- mice. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the distal airway cells that disrupts surfactant homeostasis and contributes to respiratory impairments in Pompe disease.NEW & NOTEWORTHY This research highlights the impact of Pompe disease on distal airway cells. Prior to this work, respiratory insufficiency in Pompe disease was classically attributed to pathology in respiratory muscles and motor neurons. Using the Pompe mouse model, we note significant pathology in alveolar type 1 and 2 cells with reductions in surfactant protein D and disrupted surfactant homeostasis. These novel findings highlight the potential contributions of alveolar pathology to respiratory insufficiency in Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Insuficiência Respiratória , Humanos , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , Músculo Esquelético/metabolismo , Glicogênio/metabolismo
3.
Mol Syst Biol ; 13(4): 927, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28455349

RESUMO

The intestinal epithelium is the fastest regenerative tissue in the body, fueled by fast-cycling stem cells. The number and identity of these dividing and migrating stem cells are maintained by a mosaic pattern at the base of the crypt. How the underlying regulatory scheme manages this dynamic stem cell niche is not entirely clear. We stimulated intestinal organoids with Notch ligands and inhibitors and discovered that intestinal stem cells employ a positive feedback mechanism via direct Notch binding to the second intron of the Notch1 gene. Inactivation of the positive feedback by CRISPR/Cas9 mutation of the binding sequence alters the mosaic stem cell niche pattern and hinders regeneration in organoids. Dynamical system analysis and agent-based multiscale stochastic modeling suggest that the positive feedback enhances the robustness of Notch-mediated niche patterning. This study highlights the importance of feedback mechanisms in spatiotemporal control of the stem cell niche.


Assuntos
Retroalimentação Fisiológica , Intestinos/citologia , Receptor Notch1/genética , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Autorrenovação Celular , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Mutação , Organoides/metabolismo , Receptor Notch1/química , Transdução de Sinais , Nicho de Células-Tronco , Processos Estocásticos , Biologia de Sistemas/métodos
4.
Cell Stem Cell ; 18(2): 189-202, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26849305

RESUMO

Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.


Assuntos
Divisão Celular Assimétrica , Inflamação/patologia , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Divisão Celular Assimétrica/efeitos dos fármacos , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , MicroRNAs/genética , Dados de Sequência Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA