Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 250: 118414, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365050

RESUMO

The present study reports the synthesis, characterization, and application of sustainable magnetic biochar composite. The inedible fruits of Vateria indica, a powerful ayurvedic plant were hydrothermally transformed into magnetic biochar (BC-Fe3O4) in a single step and characterized by several sophisticated techniques. FESEM analysis portrayed fibrous irregular mesh-like biochar with surface clustered Fe3O4 nanoparticles, while the incidence of carbon, oxygen, and iron in the elemental analysis by EDS established magnetic biochar formation. Numerous peaks consistent with planes of (220), (311), (400), (422), (511), (440), and (120) also substantiated the occurrence of magnetite nanoparticles and biochar respectively, as analyzed by XRD. XPS analysis showed signals at 285.65 eV, 533.28 eV, 711.08 eV, and 724.68 eV corroborating a strong C-O bond, O1s orbit, Fe2+, and Fe3+ respectively. BC-Fe3O4 was superparamagnetic with saturation magnetization of 4.74 emu/g, as per VSM studies, while its specific surface area, pore volume, and pore diameter were 5.74 m2/g, 0.029 cm3/g, and 20.86 nm respectively. The Fenton-like degradation of methylene blue (5.0-25.0 ppm) was accomplished by synthesized BC-Fe3O4, in the presence of H2O2. Within 180 min, almost complete degradation was achieved, with first-order kinetics having rate constants between 0.0299 and 0.0167 min-1. Stability and recyclability studies performed over 7 cycles exhibited unaltered degradation between 93.98 and 97.59%. This study exhibits the exceptional characteristics and degradation capabilities of BC-Fe3O4 synthesized from a sustainable plant biomass.


Assuntos
Carvão Vegetal , Carvão Vegetal/química , Frutas/química , Corantes/química , Peróxido de Hidrogênio/química , Ferro/química , Catálise , Poluentes Químicos da Água/química
2.
Environ Res ; 252(Pt 2): 118816, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570126

RESUMO

The current investigation reports the usage of adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN), the two recognized machine learning techniques in modelling tetracycline (TC) adsorption onto Cynometra ramiflora fruit biomass derived activated carbon (AC). Many characterization methods utilized, confirmed the porous structure of synthesized AC. ANN and ANFIS models utilized pH, dose, initial TC concentration, mixing speed, time duration, and temperature as input parameters, whereas TC removal percentage was designated as the output parameter. The optimized configuration for the ANN model was determined as 6-8-1, while the ANFIS model employed trimf input and linear output membership functions. The obtained results showed a strong correlation, indicated by high R2 values (ANNR2: 0.9939 & ANFISR2: 0.9906) and low RMSE values (ANNRMSE: 0.0393 & ANFISRMSE: 0.0503). Apart from traditional isotherms, the dataset was fitted to statistical physics models wherein, the double-layer with a single energy satisfactorily explained the physisorption mechanism of TC adsorption. The sorption energy was 21.06 kJ/mol, and the number of TC moieties bound per site (n) was found to be 0.42, conclusive of parallel binding of TC molecules to the adsorbent surface. The adsorption capacity at saturation (Qsat) was estimated to be 466.86 mg/g - appreciably more than previously reported values. These findings collectively demonstrate that the AC derived from C. ramiflora fruit holds great potential for efficient removal of TC from a given system, and machine learning approaches can effectively model the adsorption processes.


Assuntos
Biomassa , Carvão Vegetal , Aprendizado de Máquina , Redes Neurais de Computação , Tetraciclina , Adsorção , Tetraciclina/química , Tetraciclina/análise , Carvão Vegetal/química , Frutas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise
3.
Environ Res ; 216(Pt 4): 114766, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370813

RESUMO

The present study aimed at the synthesis of cobalt oxide nanoparticles (CONPs) mediated by leaf extract of Muntingia calabura using a rapid and simple method and evaluation of its photocatalytic activity against methylene blue (MB) dye. UV-vis absorption spectrum showed multiple peaks with an optical band gap of 2.05 eV, which was concordant with the literature. FESEM image signified the irregular-shaped, clusters of CONPs, and EDX confirmed the existence of the Co and O elements. The sharp peaks of XRD spectrum corroborated the crystalline nature with a mean crystallite size of 27.59 nm. Raman spectrum substantiated the purity and structural defects. XPS signified the presence of Co in different oxidation states. FTIR image revealed the presence of various phytochemicals present on the surface and the bands at 515 and 630 cm-1 designated the characteristic Co-O bonds. VSM studies confirmed the antiferromagnetic property with negligible hysteresis. The high BET specific surface area (10.31 m2/g) and the mesoporous nature of the pores of CONPs signified the presence of a large number of active sites, thus, indicating their suitability as photocatalysts. The CONPs degraded 88% of 10 mg/L MB dye within 300 min of exposure to sunlight. The degradation of MB dye occurred due to the formation of hydroxyl free radicals on exposure to sunlight, which followed first-order kinetics with rate constant of 0.0065 min-1. Hence, the CONPs synthesized herein could be applied to degrade other xenobiotics and the treatment of industrial wastewater and environmentally polluted samples.


Assuntos
Cobalto , Nanopartículas , Óxidos , Nanopartículas/química , Azul de Metileno/química
4.
Environ Res ; 212(Pt B): 113274, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35461848

RESUMO

The present work reports the synthesis of hydroxyapatite (HAp) via the green chemistry approach by using the leaf extract of copper pod tree and its adsorptive potential to remove Acid blue 113 (AB113) dye. FESEM-EDS characterization of the synthesized HAp confirmed rod-shaped HAp with prominent Ca and P elements. The crystallinity of HAp was ascertained by XRD and thermal stability was analyzed by TGA. The colloidal suspension stability was determined as - 17.7 mV by Zeta potential analyzer. The mesoporous structure was affirmed via BET studies with a high magnitude of specific surface area. TEM studies substantiated the rod-shaped HAp as observed in FESEM. The signals specific to HAp were observed in XPS studies. Adsorption of AB113 on the synthesized HAp was examined by varying the process parameters. Batch experiments resulted in an optimum dye removal of 92.72% at a pH of 8, 1 g/L of CP-HAp nps dosage, 20 ppm AB113 concentration, 120 min contact time, 150 rpm agitation speed and at room temperature. The maximum adsorption capacity reached 120.48 mg/g. Multifarious isotherms characterized the adsorption with Freundlich isotherm (R2 > 0.968) dominating Langmuir indicating multilayer adsorption. The experimental data reasonably matched pseudo-second-order kinetics with R2 exceeding 0.99. Thermodynamic investigations underlined the spontaneity and exothermicity of the processes. Results showed the suitability of the HAp nanoadsorbent to remove AB113 from wastestreams.


Assuntos
Durapatita , Poluentes Químicos da Água , Adsorção , Compostos Azo , Durapatita/química , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/química
5.
Environ Res ; 214(Pt 2): 113917, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35931186

RESUMO

This study deals with the synthesis of hydroxyapatite nanoparticles (HAPnps) mediated by Acacia falcata leaf extract. Aggregates of needle-shaped crystalline nanostructures were confirmed by FE-SEM and TEM analysis. Well-defined rings in the SAED patterns corroborated the polycrystalline nature of the HAPnps. Individual elements present in the HAPnps were attested by the specific signals for Ca, P, and O in the EDS and XPS analyses. The distinct peaks observed in the XRD spectrum matched well with the HAP hexagonal patterns with a mean crystallite size of 55.04 nm. The FTIR study unveiled the coating of the nanoparticles with the biomolecules from Acacia falcata leaves. The suspension HAPnps exhibited polydispersity (0.446) and remarkable stability (zeta potential: - 31.9 mV) as evident from DLS studies. The pore diameter was 25.7 nm as obtained from BET analysis, suggesting their mesoporous nature. The HAPnps showed the cytotoxic effect on A549 lung and MDA-MB231 breast carcinoma cell lines, with an IC50 value of 55 µg/mL. The distortion of the cell membrane and cell morphology, along with the chromatin condensation and cell necrosis on treatment with HAPnps were detected under fluorescence microscopy post acridine orange/ethidium bromide dye staining. This study reports the anti-cancerous potential of non-drug-loaded plant-mediated HAPnps. Therefore, the HAPnps obtained in this investigation could play a vital role in the biomedical field of cancer therapy.


Assuntos
Acacia , Nanopartículas Metálicas , Animais , Linhagem Celular , Durapatita , Mamíferos , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Prata/química
6.
Environ Res ; 214(Pt 2): 113864, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35870497

RESUMO

The conventional synthesis of hematite nanoparticles (HNPs) is expensive and creates secondary contaminants. Therefore, to combat these issues, there is a requirement for a cheap, effective, and eco-friendly technique. Herein, HNPs were prepared using the fruit extract of Spondias pinnata - an abundant source available in Western-coastal India. The polyphenolic compounds aided the synthesis process and the entire procedure was very rapid. The obtained HNPs had needle-like morphology with agglomerations due to the magnetic interactions as seen in FESEM and HRTEM images. Fe and O elements were noticed in EDS results. The crystalline nature and crystal phase were confirmed from XRD and SAED patterns. The lattice parameters of HNPs were in tandem with the literature. Fe-O crystalline vibrations were noticed in FTIR studies. VSM results portrayed the superparamagnetic nature of HNPs with a high magnetic saturation value of 8.949 emu/g and a negligible hysteresis loop. Thermal stability was ascertained using TGA results with 32% overall weight loss. XPS studies revealed the existence of pure HNPs with signature peaks. Raman spectrum showed the bands specific for HNPs, comparable to the commercial one. In addition, the HNPs were mesoporous with a high surface area (72.04 m2/g) - higher than the commercial one. The anticancer potential of the HNPs was successfully demonstrated against two mammalian cancer cell lines. Therefore, the HNPs synthesized in this study could be applied in various biomedical fields, especially for anticancer formulations.


Assuntos
Nanopartículas , Animais , Índia , Nanopartículas Magnéticas de Óxido de Ferro , Magnetismo , Mamíferos , Microscopia Eletrônica de Transmissão , Nanopartículas/química
7.
Environ Res ; 214(Pt 1): 113785, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35793722

RESUMO

Zirconium oxide nanoparticles (ZrO2NPs) were prepared using the leaf extract of Muntingia calabura as a reductant. The absorption peak at 232 nm confirmed the signature peak for ZrO2NPs with band energy at 5.07 eV. The ZrO2NPs were tetragonal and highly crystalline, possessing a mean diameter of 14.83 nm as confirmed by XRD studies. The lattice constants (a = 0.362 nm and c = 0.511 nm) were consistent with the literature. Spherical nanoaggregates (29.25 nm) were seen in FESEM image and the specific signals for Zr and O were noticed in EDS image. The tetragonal phase of the ZrO2NPs were further confirmed from the XPS and Raman studies. PL spectrum had a sharp emission at 493 nm. The FTIR spectrum revealed the presence of various functional groups. ZrO2NPs were thermally stable with 5.76% total weight loss - as revealed from TGA profile. The photocatalytic breakdown of methylene blue (MB) dye under the influence of solar irradiation was performed using ZrO2NPs which exhibited 89.11% degradation within 5 h. Hence, the synthesized ZrO2NPs can be used as an alternate potential photocatalyst for the degradation of various dyes present in waste streams.


Assuntos
Azul de Metileno , Nanopartículas , Catálise , Corantes , Zircônio
8.
Chemosphere ; 361: 142513, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38830462

RESUMO

This study focused on evaluating the efficacy of a magnetic activated carbon material (CPAC@Fe3O4) derived from pods of copper pod tree in adsorbing the toxic herbicide, 2,4- (2,4-D) from aqueous solutions. The synthesized CPAC@Fe3O4 adsorbent, underwent various characterization techniques. FESEM images indicated a rough surface, incorporating iron oxide nanoparticles, while EDS analysis confirmed the presence of elements like Fe, O, and C. Notably, the CPAC@Fe3O4 exhibited high surface area (749.10 m2/g) and pore volume (0.5351 cm³/g), confirming its mesoporous nature. XRD investigations identified distinct signals associated with graphitic carbon and magnetite nanoparticles, while VSM analysis verified its magnetic properties with a high magnetic saturation value (2.72 emu/g). The adsorption process was exothermic, with a decrease in adsorption capacity at higher temperatures. Freundlich isotherm provided the best fit for the adsorption, and the pseudo-second-order equation effectively described the kinetics. Remarkably, the maximum adsorption capacity ranged from 246.43 to 261.03 mg/g, surpassing previously reported values. The ΔH° value (-8.67 kJ/mol) suggested a physisorption mechanism, and the negative ΔG° values established the spontaneous nature. Furthermore, the synthesized adsorbent demonstrated exceptional reusability, allowing for up to five cycles of adsorption-desorption operations. When applied to simulated agricultural runoff, CPAC@Fe3O4 showcased a significant adsorption capacity of 160.71 mg/g for 50 mg/L 2,4-D, using a 0.2 g/L dosage at pH 2. This study showcased the transformation of copper pod biomass into a valuable magnetic nanoadsorbent capable of efficiently eliminating the noxious 2,4-D pollutant from aqueous environments.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Biomassa , Carvão Vegetal , Herbicidas , Nanocompostos , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Carvão Vegetal/química , Herbicidas/química , Nanocompostos/química , Cinética , Purificação da Água/métodos , Agricultura/métodos , Nanopartículas de Magnetita/química , Termodinâmica , Concentração de Íons de Hidrogênio
9.
Chemosphere ; 336: 139143, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285973

RESUMO

The usage of various herbicides in the agricultural field leads to water pollution which is a big threat to the environment. Herein, the pods of the Peltophorum pterocarpum tree were used as a cheap resource to synthesize activated carbon (AC) by low-temperature carbonization to remove 2,4-dichlorophenoxyacetic acid (2,4-D) - an abundantly used herbicide. The exceptional surface area (1078.34 m2/g), mesoporous structure, and the various functional groups of the prepared AC adsorbed 2,4-D effectively. The maximum adsorption capacity was 255.12 mg/g, significantly higher than the existing AC adsorbents. The adsorption data satisfactorily modelled using Langmuir and pseudo-second-order models. Also, the adsorption mechanism was studied using a statistical physics model which substantiated the multi-molecular interaction of 2,4-D with the AC. The adsorption energy (<20 kJ/mol) and thermodynamic studies (ΔH°: -19.50 kJ/mol) revealed the physisorption and exothermicity. The practical application of the AC was successfully tested in various waterbodies by spiking experiments. Hence, this work confirms that the AC prepared from the pods of P. pterocarpum can be applied as a potential adsorbent to remove herbicides from polluted waterbodies.


Assuntos
Herbicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético/química , Temperatura , Adsorção , Herbicidas/química , Fenoxiacetatos , Termodinâmica , Física , Cinética , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Carvão Vegetal/química
10.
Chemosphere ; 310: 136892, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36265708

RESUMO

Herein, the sustainable fabrication of magnetic iron oxide nanoadsorbent prepared with activated carbon of inedible Cynometra ramiflora fruit has been investigated. Activated carbon was obtained from phosphoric acid-treated C. ramiflora fruit, which was then utilized for the synthesis of magnetic nanocomposite (CRAC@Fe2O3). The formed nanocomposite was a porous irregular dense matrix of amorphous evenly sized spherical nanoparticles, as visualized by FESEM, and also contained carbon, oxygen, iron, and phosphorous in its elemental composition. FT-IR spectrum depicted characteristic bands attributing to Fe-O, C-OH, C-N, CC, and -OH bonds. VSM and XRD results proved that CRAC@Fe2O3 was superparamagnetic with a moderate degree of crystallinity and high saturation magnetization value (1.66 emu/g). Superior surface area, pore size, and pore volume of 766.75 m2/g, 2.11 nm, and 0.4050 cm3/g respectively were measured on BET analysis of CRAC@Fe2O3 nanocomposite, indicating their suitability for use as an adsorbent. On application of this nanocomposite for adsorption of tetracycline, maximum removal of 95.78% of 50 ppm TC at pH 4, CRAC@Fe2O3 0.4 g/L in 240 min. The adsorption of TC by CRAC@Fe2O3 was confirmed as monolayer sorption by ionic interaction (R2 = 0.9999) as it followed pseudo-second-order kinetics and Langmuir isotherm (R2 = 0.9801). CRAC@Fe2O3 showed a maximum adsorption capacity of 312.5 mg/g towards TC antibiotics indicating its potential for the treatment of antibiotic-contaminated samples. Since negative ΔGo and positive ΔHo and ΔSo values were obtained at all tested temperatures during the thermodynamic studies, the adsorption was confirmed to be endothermic, spontaneous, and feasible with an enhanced degree of randomness.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Frutas , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química , Tetraciclina/química , Nanocompostos/química , Água/química , Antibacterianos , Cinética , Termodinâmica , Fenômenos Magnéticos
11.
Chemosphere ; 310: 136883, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257398

RESUMO

In the present study, ferric oxide nanoparticles impregnated with activated carbon from Ulva prolifera biomass (UPAC-Fe2O3) were prepared and employed to remove 2,4-Dichlorophenoxyacetic acid (2,4-D) by adsorption. The UPAC-Fe2O3 nanocomposite was characterized for its structural and functional properties by a variety of techniques. The nanocomposite had a jagged, irregular surface with pores due to uneven scattering of Fe2O3 nanoparticles, whereas elemental analysis portrayed the incidence of carbon, oxygen, and iron. XRD analysis established the crystalline and amorphous planes corresponding to the iron oxide and carbon phase respectively. FT-IR analyzed the functional groups that confirmed the integration of Fe2O3 nanoparticles onto nanocomposite surfaces. VSM and XPS studies uncovered the superparamagnetic nature and presence of carbon and Fe2O3, respectively, in the UPAC-Fe2O3 nanocomposite. While the surface area was 292.51 m2/g, the size and volume of the pores were at 2.61 nm and 0.1906 cm3/g, respectively, indicating the mesoporous nature and suitability of the nanocomposites that could be used as adsorbents. Adsorptive removal of 2,4-D by nanocomposite for variations in process parameters like pH, dosage, agitation speed, adsorption time, and 2,4-D concentration was studied. The adsorption of 2,4-D by UPAC-Fe2O3 nanocomposite was monolayer chemisorption owing to Langmuir isotherm behavior along with a pseudo-second-order kinetic model. The maximum adsorption capacity and second order rate constant values were 60.61 mg/g and 0.0405 g/mg min respectively. Thermodynamic analysis revealed the spontaneous and feasible endothermic adsorption process. These findings confirm the suitability of the synthesized UPAC-Fe2O3 nanocomposite to be used as an adsorbent for toxic herbicide waste streams.


Assuntos
Herbicidas , Nanocompostos , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Nanocompostos/química , Herbicidas/análise , Cinética , Termodinâmica , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio
12.
Chemosphere ; 286(Pt 3): 131938, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426299

RESUMO

Magnetic activated charcoal/Fe2O3 nanocomposite (AC/Fe2O3NC) was fabricated using Spondias dulcis leaf extract by a facile method and used for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions for the first time. The nanocomposite was characterized by methods such as FE-SEM, EDS, XRD, FTIR, TGA, VSM, and BET to identify and confirm the surface morphology, elemental composition, crystalline nature, functional groups, thermal stability, magnetic behavior, and surface area respectively. Box-Behnken Design (BBD) - an optimization method, which belongs to the Response surface methodology (RSM) and a modeling tool - Artificial Neural Network (ANN) were employed to design, optimize and predict the relationship between the input parameters (pH, initial concentration of 2,4-D, time and agitation speed) versus the output parameter (adsorption efficiency of 2,4-D). Adsorption efficiency of 98.12% was obtained at optimum conditions (pH: 2.05, initial concentration: 32 ppm, contact time: 100 min, agitation speed: 130 rpm, temperature: 30 °C, and dosage: 0.2 g/L). The predictive ability of the ANN was superior (R2 = 0.99) than the quadratic model, given by the RSM (R2 = 0.93). The equilibrium data were best-fitted to Langmuir isotherm (R2 = 0.9944) and the kinetics obeyed pseudo-second-order model (R2 = 0.9993) satisfactorily. Thermodynamic studies revealed the spontaneity and exothermic nature of adsorption. The maximum adsorption capacity, qm was found to be 255.10 mg/g, substantially larger than the reported values for 2,4-D adsorption by other magnetic nanoadsorbents. Therefore, this nanoadsorbent may be utilized as an excellent alternative for the elimination of 2,4-D from the waterbodies.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Adsorção , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Fenômenos Magnéticos , Termodinâmica , Poluentes Químicos da Água/análise
13.
Chemosphere ; 308(Pt 1): 136271, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064025

RESUMO

In this study, magnetite nanoparticles (MNPs) were synthesized using the seaweed - Ulva prolifera, an amply found marine source in the Western coastal regions of India. The surface and other properties of MNPs were characterized by many sophisticated methods. Spherical nanoclusters were observed in the FESEM image and iron and oxygen elements were seen in EDS results. XRD peaks were consistent with magnetite standards and MNPs had good crystallinity. FTIR portrayed the specific signals for MNPs and TGA profile ascertained the thermal stability. Magnetic saturation of 41.84 emu/g with negligible hysteresis loop substantiated the superparamagnetism. XPS pointed out the presence of Fe and O with oxidation states specific for MNPs, and the results were consistent with EDS. BET revealed a high specific surface area (144.98 m2/g) of MNPs with mesopores. The synthesized MNPs were used as nanoadsorbent for the removal of As (III) from aqueous solution. The central composite design was used for optimizing As (III) adsorption on MNPs. The optimum conditions were found out as 97.5% at pH: 9, rotation speed: 150 rpm, time: 90 min, and MNPs dosage: 1.15 g/L. The adsorption process fitted in a better way with the Langmuir isotherm and pseudo-second-order model. The highest adsorption capacity was 12.45 mg/g, which is substantially larger than the documenter reports. The spontaneous and endothermic nature of adsorption were ascertained from thermodynamic studies. The results suggested that the synthesized MNPs using the extract of U. prolifera could be alternative nanoadsorbents for eliminating toxic heavy metals from waste streams.


Assuntos
Nanopartículas de Magnetita , Metais Pesados , Ulva , Poluentes Químicos da Água , Adsorção , Óxido Ferroso-Férrico , Concentração de Íons de Hidrogênio , Ferro , Cinética , Oxigênio , Extratos Vegetais
14.
Chemosphere ; 299: 134752, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35513083

RESUMO

The present work reports the study on the green synthesis of hydroxyapatite (HAP) nanoadsorbents using Peltophorum pterocarpum pod extract. HAP nanoadsorbents were characterized by using FESEM, EDS, TEM, XRD, FTIR, XPS, and BET analyses. The results highlighted the high purity, needle-like aggregations, and crystalline nature of the prepared HAP nanoadsorbents. The surface area was determined as 40.04 m2/g possessing mesopores that can be related to the high adsorption efficiency of the HAP for the removal of a toxic dye, - Acid Blue 113 (AB 113) from water. Central Composite Design (CCD) was used for optimizing the adsorption process, which yielded 94.59% removal efficiency at the optimum conditions (dose: 0.5 g/L, AB 113 dye concentration: 25 ppm, agitation speed: 173 rpm, and adsorption time: 120 min). The adsorption kinetics followed the pseudo-second-order model (R2:0.9996) and the equilibrium data fitted well with the Freundlich isotherm (R2:0.9924). The thermodynamic parameters indicated that the adsorption of AB 113 was a spontaneous and exothermic process. The highest adsorption capacity was determined as 153.85 mg/g, which suggested the promising role of green HAP nanoadsorbents in environmental remediation applications.


Assuntos
Durapatita , Poluentes Químicos da Água , Adsorção , Compostos Azo , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA