Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1783-1801.e7, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38614097

RESUMO

Liquid-liquid phase separation (LLPS) of putative assembly scaffolds has been proposed to drive the biogenesis of membraneless compartments. LLPS scaffolds are usually identified through in vitro LLPS assays with single macromolecules (homotypic), but the predictive value of these assays remains poorly characterized. Here, we apply a strategy to evaluate the robustness of homotypic LLPS assays. When applied to the chromosomal passenger complex (CPC), which undergoes LLPS in vitro and localizes to centromeres to promote chromosome biorientation, LLPS propensity in vitro emerged as an unreliable predictor of subcellular localization. In vitro CPC LLPS in aqueous buffers was enhanced by commonly used crowding agents. Conversely, diluted cytomimetic media dissolved condensates of the CPC and of several other proteins. We also show that centromeres do not seem to nucleate LLPS, nor do they promote local, spatially restrained LLPS of the CPC. Our strategy can be adapted to purported LLPS scaffolds of other membraneless compartments.


Assuntos
Centrômero , Centrômero/metabolismo , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/química , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Humanos , Separação de Fases
2.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881301

RESUMO

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Assuntos
Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Cinetocoros/química , Complexos Multiproteicos/química , Animais , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Químicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
3.
Mol Cell ; 82(11): 2113-2131.e8, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35525244

RESUMO

Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.


Assuntos
Cinetocoros , Nucleossomos , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Microscopia Crioeletrônica , Humanos , Cinetocoros/metabolismo , Nucleossomos/genética
4.
Mol Cell ; 81(1): 67-87.e9, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33248027

RESUMO

Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/genética , Células HeLa , Histonas/genética , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Quinase 1 Polo-Like
5.
Nat Rev Mol Cell Biol ; 17(5): 322-8, 2016 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27103327

RESUMO

Next year will be the 50th anniversary of the discovery of tubulin. To celebrate this discovery, six leaders in the field of microtubule research reflect on key findings and technological breakthroughs over the past five decades, discuss implications for therapeutic applications and provide their thoughts on what questions need to be addressed in the near future.


Assuntos
Microtúbulos/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Biologia Celular/história , História do Século XX , Humanos , Neoplasias/tratamento farmacológico , Tubulina (Proteína)/história , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
6.
Mol Cell ; 79(1): 99-114.e9, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32445620

RESUMO

Structural maintenance of chromosomes (SMC) complexes are essential for genome organization from bacteria to humans, but their mechanisms of action remain poorly understood. Here, we characterize human SMC complexes condensin I and II and unveil the architecture of the human condensin II complex, revealing two putative DNA-entrapment sites. Using single-molecule imaging, we demonstrate that both condensin I and II exhibit ATP-dependent motor activity and promote extensive and reversible compaction of double-stranded DNA. Nucleosomes are incorporated into DNA loops during compaction without being displaced from the DNA, indicating that condensin complexes can readily act upon nucleosome-bound DNA molecules. These observations shed light on critical processes involved in genome organization in human cells.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Humanos , Modelos Moleculares , Complexos Multiproteicos/genética , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula/métodos
7.
EMBO J ; 42(24): e114838, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984321

RESUMO

Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.


Assuntos
Dineínas , Cinetocoros , Dineínas/genética , Dineínas/metabolismo , Cinetocoros/metabolismo , Cinesinas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fuso Acromático/metabolismo , Microtúbulos/metabolismo , Complexo Dinactina/genética , Mitose , Segregação de Cromossomos
8.
EMBO J ; 42(13): e112504, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37203876

RESUMO

During cell division, kinetochores link chromosomes to spindle microtubules. The Ndc80 complex, a crucial microtubule binder, populates each kinetochore with dozens of copies. Whether adjacent Ndc80 complexes cooperate to promote microtubule binding remains unclear. Here we demonstrate that the Ndc80 loop, a short sequence that interrupts the Ndc80 coiled-coil at a conserved position, folds into a more rigid structure than previously assumed and promotes direct interactions between full-length Ndc80 complexes on microtubules. Mutations in the loop impair these Ndc80-Ndc80 interactions, prevent the formation of force-resistant kinetochore-microtubule attachments, and cause cells to arrest in mitosis for hours. This arrest is not due to an inability to recruit the kinetochore-microtubule stabilizing SKA complex and cannot be overridden by mutations in the Ndc80 tail that strengthen microtubule attachment. Thus, loop-mediated organization of adjacent Ndc80 complexes is crucial for stable end-on kinetochore-microtubule attachment and spindle assembly checkpoint satisfaction.


Assuntos
Cinetocoros , Microtúbulos , Segregação de Cromossomos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Ligação Proteica , Animais
9.
EMBO J ; 41(5): e109952, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107832

RESUMO

Molecular mechanistic biology has ushered us into the world of life's building blocks, revealing their interactions in macromolecular complexes and inspiring strategies for detailed functional interrogations. The biogenesis of membraneless cellular compartments, functional mesoscale subcellular locales devoid of strong internal order and delimiting membranes, is among mechanistic biology's most demanding current challenges. A developing paradigm, biomolecular phase separation, emphasizes solvation of the building blocks through low-affinity, weakly adhesive unspecific interactions as the driver of biogenesis of membraneless compartments. Here, I discuss the molecular underpinnings of the phase separation paradigm and demonstrate that validating its assumptions is much more challenging than hitherto appreciated. I also discuss that highly specific interactions, rather than unspecific ones, appear to be the main driver of biogenesis of subcellular compartments, while phase separation may be harnessed locally in selected instances to generate material properties tailored for specific functions, as exemplified by nucleocytoplasmic transport.


Assuntos
Substâncias Macromoleculares/metabolismo , Membranas/metabolismo , Sequência de Aminoácidos , Organelas/metabolismo
10.
EMBO J ; 41(9): e110411, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35373361

RESUMO

In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein-dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl-binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.


Assuntos
Cinetocoros , Fuso Acromático , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
11.
Cell ; 146(4): 499-501, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854975

RESUMO

Accurate chromosome segregation during mitosis and meiosis is essential for cell viability. Two papers in this issue of Cell (Kitajima et al., 2011; Magidson et al., 2011) describe chromosome movements during cell division with unprecedented accuracy, revealing previously unrecognized features of chromosome spindle alignment and paving the way to quantitative phenotypic and mechanistic analyses of chromosome alignment during prometaphase.

12.
Mol Cell ; 72(4): 766-777.e6, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30344098

RESUMO

The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Células HeLa , Holoenzimas/metabolismo , Humanos , Modelos Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Proteína Fosfatase 1/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Ubiquitina/metabolismo
13.
Mol Cell ; 71(6): 923-939.e10, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174292

RESUMO

The approximately thirty core subunits of kinetochores assemble on centromeric chromatin containing the histone H3 variant CENP-A and connect chromosomes with spindle microtubules. The chromatin proximal 16-subunit CCAN (constitutive centromere associated network) creates a mechanically stable bridge between CENP-A and the kinetochore's microtubule-binding machinery, the 10-subunit KMN assembly. Here, we reconstituted a stoichiometric 11-subunit human CCAN core that forms when the CENP-OPQUR complex binds to a joint interface on the CENP-HIKM and CENP-LN complexes. The resulting CCAN particle is globular and connects KMN and CENP-A in a 26-subunit recombinant particle. The disordered, basic N-terminal tail of CENP-Q binds microtubules and promotes accurate chromosome alignment, cooperating with KMN in microtubule binding. The N-terminal basic tail of the NDC80 complex, the microtubule-binding subunit of KMN, can functionally replace the CENP-Q tail. Our work dissects the connectivity and architecture of CCAN and reveals unexpected functional similarities between CENP-OPQUR and the NDC80 complex.


Assuntos
Proteínas Cromossômicas não Histona/ultraestrutura , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Centrômero/fisiologia , Proteína Centromérica A/metabolismo , Proteína Centromérica A/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo
14.
EMBO J ; 39(12): e103180, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32202322

RESUMO

Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.


Assuntos
Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Cinetocoros/metabolismo , Mitose , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , Células HeLa , Humanos , Mutação Puntual , Domínios Proteicos
15.
Cell ; 133(3): 427-39, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18455984

RESUMO

Kinetochores are proteinaceous assemblies that mediate the interaction of chromosomes with the mitotic spindle. The 180 kDa Ndc80 complex is a direct point of contact between kinetochores and microtubules. Its four subunits contain coiled coils and form an elongated rod structure with functional globular domains at either end. We crystallized an engineered "bonsai" Ndc80 complex containing a shortened rod domain but retaining the globular domains required for kinetochore localization and microtubule binding. The structure reveals a microtubule-binding interface containing a pair of tightly interacting calponin-homology (CH) domains with a previously unknown arrangement. The interaction with microtubules is cooperative and predominantly electrostatic. It involves positive charges in the CH domains and in the N-terminal tail of the Ndc80 subunit and negative charges in tubulin C-terminal tails and is regulated by the Aurora B kinase. We discuss our results with reference to current models of kinetochore-microtubule attachment and centromere organization.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Proteínas do Citoesqueleto , Humanos , Espectrometria de Massas , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Engenharia de Proteínas , Fuso Acromático/metabolismo
16.
Nature ; 542(7642): 498-502, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28102834

RESUMO

In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1-MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein-protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.


Assuntos
Biocatálise , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Mad2/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Cinética , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Proteínas Tirosina Quinases/metabolismo , Fuso Acromático/metabolismo , Fatores de Tempo
17.
Mol Cell ; 57(5): 765-766, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25747656

RESUMO

The spindle assembly checkpoint promotes chromosome bi-orientation and halts mitotic progression in the presence of improper kinetochore-microtubule attachments. Knl1, a kinetochore protein, acts as a scaffold for SAC signaling. A new study unveils remarkable complexity in the interplay of Knl1 phosphorylation and SAC function (Vleugel et al., 2015).


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Proteínas de Ligação a Poli-ADP-Ribose
18.
Biophys J ; 121(21): 4048-4062, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199251

RESUMO

In the mitotic spindle, microtubules attach to chromosomes via kinetochores. The microtubule-binding Ndc80 complex is an integral part of kinetochores, and is essential for kinetochores to attach to microtubules and to transmit forces from dynamic microtubule ends to the chromosomes. The Ndc80 complex has a rod-like appearance with globular domains at its ends that are separated by a long coiled coil. Its mechanical properties are considered important for the dynamic interaction between kinetochores and microtubules. Here, we present a novel method that allows us to time trace the effective stiffness of Ndc80 complexes following shortening microtubule ends against applied force in optical trap experiments. Applying this method to wild-type Ndc80 and three variants (calponin homology (CH) domains mutated or Hec1 tail unphosphorylated, phosphorylated, or truncated), we reveal that each variant exhibits strain stiffening; i.e., the effective stiffness increases under tension that is built up by a depolymerizing microtubule. The strain stiffening relation is roughly linear and independent of the state of the microtubule. We introduce structure-based models that show that the strain stiffening can be traced back to the specific architecture of the Ndc80 complex with a characteristic flexible kink, to thermal fluctuations of the microtubule, and to the bending elasticity of flaring protofilaments, which exert force to move the Ndc80 complexes. Our model accounts for changes in the amount of load-bearing attachments at various force levels and reproduces the roughly linear strain stiffening behavior, highlighting the importance of force-dependent binding affinity.


Assuntos
Cinetocoros , Proteínas Nucleares , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Segregação de Cromossomos
19.
Nature ; 537(7619): 249-253, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27580032

RESUMO

Chromosomes are carriers of genetic material and their accurate transfer from a mother cell to its two daughters during cell division is of paramount importance for life. Kinetochores are crucial for this process, as they connect chromosomes with microtubules in the mitotic spindle. Kinetochores are multi-subunit complexes that assemble on specialized chromatin domains, the centromeres, that are able to enrich nucleosomes containing the histone H3 variant centromeric protein A (CENP-A). A group of several additional CENPs, collectively known as constitutive centromere associated network (CCAN), establish the inner kinetochore, whereas a ten-subunit assembly known as the KMN network creates a microtubule-binding site in the outer kinetochore. Interactions between CENP-A and two CCAN subunits, CENP-C and CENP-N, have been previously described, but a comprehensive understanding of CCAN organization and of how it contributes to the selective recognition of CENP-A has been missing. Here we use biochemical reconstitution to unveil fundamental principles of kinetochore organization and function. We show that cooperative interactions of a seven-subunit CCAN subcomplex, the CHIKMLN complex, determine binding selectivity for CENP-A over H3-nucleosomes. The CENP-A:CHIKMLN complex binds directly to the KMN network, resulting in a 21-subunit complex that forms a minimal high-affinity linkage between CENP-A nucleosomes and microtubules in vitro. This structural module is related to fungal point kinetochores, which bind a single microtubule. Its convolution with multiple CENP-A proteins may give rise to the regional kinetochores of higher eukaryotes, which bind multiple microtubules. Biochemical reconstitution paves the way for mechanistic and quantitative analyses of kinetochores.


Assuntos
Cinetocoros/química , Cinetocoros/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Autoantígenos/metabolismo , Centrômero/química , Centrômero/genética , Centrômero/metabolismo , Proteína Centromérica A , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Microtúbulos/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fuso Acromático
20.
Mol Cell ; 53(4): 591-605, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24530301

RESUMO

Faithful chromosome segregation is mandatory for cell and organismal viability. Kinetochores, large protein assemblies embedded in centromeric chromatin, establish a mechanical link between chromosomes and spindle microtubules. The KMN network, a conserved 10-subunit kinetochore complex, harbors the microtubule-binding interface. RWD domains in the KMN subunits Spc24 and Spc25 mediate kinetochore targeting of the microtubule-binding subunits by interacting with the Mis12 complex, a KMN subcomplex that tethers directly onto the underlying chromatin layer. Here, we show that Knl1, a KMN subunit involved in mitotic checkpoint signaling, also contains RWD domains that bind the Mis12 complex and that mediate kinetochore targeting of Knl1. By reporting the first 3D electron microscopy structure of the KMN network, we provide a comprehensive framework to interpret how interactions of RWD-containing proteins with the Mis12 complex shape KMN network topology. Our observations unveil a regular pattern in the construction of the outer kinetochore.


Assuntos
Cinetocoros/química , Proteínas Associadas aos Microtúbulos/química , Sequência de Aminoácidos , Centrômero/química , Segregação de Cromossomos , Cristalografia por Raios X , Escherichia coli/metabolismo , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Microscopia Eletrônica , Microtúbulos/química , Mitose , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA