Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Med Microbiol ; 310(2): 151399, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31980371

RESUMO

The effective control of multidrug resistant tuberculosis (MDR-TB) relies upon the timely diagnosis and correct treatment of all tuberculosis cases. Whole genome sequencing (WGS) has great potential as a method for the rapid diagnosis of drug resistant Mycobacterium tuberculosis (Mtb) isolates. This method overcomes most of the problems that are associated with current phenotypic drug susceptibility testing. However, the application of WGS in the clinical setting has been deterred by data complexities and skill requirements for implementing the technologies as well as clinical interpretation of the next generation sequencing (NGS) data. The proposed diagnostic application was drawn upon recent discoveries of patterns of Mtb clade-specific genetic polymorphisms associated with antibiotic resistance. A catalogue of genetic determinants of resistance to thirteen anti-TB drugs for each phylogenetic clade was created. A computational algorithm for the identification of states of diagnostic polymorphisms was implemented as an online software tool, Resistance Sniffer (http://resistance-sniffer.bi.up.ac.za/), and as a stand-alone software tool to predict drug resistance in Mtb isolates using complete or partial genome datasets in different file formats including raw Illumina fastq read files. The program was validated on sequenced Mtb isolates with data on antibiotic resistance trials available from GMTV database and from the TB Platform of South African Medical Research Council (SAMRC), Pretoria. The program proved to be suitable for probabilistic prediction of drug resistance profiles of individual strains and large sequence data sets.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Software , Sequenciamento Completo do Genoma , Algoritmos , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Filogenia , Polimorfismo de Nucleotídeo Único , África do Sul
2.
Sci Total Environ ; 903: 165817, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506905

RESUMO

The uptake of wastewater-based epidemiology (WBE) for SARS-CoV-2 as a complementary tool for monitoring population-level epidemiological features of the COVID-19 pandemic in low-and-middle-income countries (LMICs) is low. We report on the findings from the South African SARS-CoV-2 WBE surveillance network and make recommendations regarding the implementation of WBE in LMICs. Eight laboratories quantified influent wastewater collected from 87 wastewater treatment plants in all nine South African provinces from 01 June 2021 to 31 May 2022 inclusive, during the 3rd and 4th waves of COVID-19. Correlation and regression analyses between wastewater levels of SARS-CoV-2 and district laboratory-confirmed caseloads were conducted. The sensitivity and specificity of novel 'rules' based on WBE data to predict an epidemic wave were determined. Amongst 2158 wastewater samples, 543/648 (85 %) samples taken during a wave tested positive for SARS-CoV-2 compared with 842 positive tests from 1512 (55 %) samples taken during the interwave period. Overall, the regression-co-efficient was 0,66 (95 % confidence interval = 0,6-0,72, R2 = 0.59), ranging from 0.14 to 0.87 by testing laboratory. Early warning of the 4th wave of SARS-CoV-2 in Gauteng Province in November-December 2021 was demonstrated. A 50 % increase in log copies of SARS-CoV-2 compared with a rolling mean over the previous five weeks was the most sensitive predictive rule (58 %) to predict a new wave. Our findings support investment in WBE for SARS-CoV-2 surveillance in LMICs as an early warning tool. Standardising test methodology is necessary due to varying correlation strengths across laboratories and redundancy across testing plants. A sentinel site model can be used for surveillance networks without affecting WBE finding for decision-making. Further research is needed to identify optimal test frequency and the need for normalisation to population size to identify predictive and interpretive rules to support early warning and public health action.

3.
Parasit Vectors ; 11(1): 5, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298712

RESUMO

BACKGROUND: Only a few studies have examined the presence of Anaplasma marginale and Anaplasma centrale in South Africa, and no studies have comprehensively examined these species across the whole country. To undertake this country-wide study we adapted a duplex quantitative real-time PCR (qPCR) assay for use in South Africa but found that one of the genes on which the assay was based was variable. Therefore, we sequenced a variety of field samples and tested the assay on the variants detected. We used the assay to screen 517 cattle samples sourced from all nine provinces of South Africa, and subsequently examined A. marginale positive samples for msp1α genotype to gauge strain diversity. RESULTS: Although the A. marginale msp1ß gene is variable, the qPCR functions at an acceptable efficiency. The A. centrale groEL gene was not variable within the qPCR assay region. Of the cattle samples screened using the assay, 57% and 17% were found to be positive for A. marginale and A. centrale, respectively. Approximately 15% of the cattle were co-infected. Msp1α genotyping revealed 36 novel repeat sequences. Together with data from previous studies, we analysed the Msp1a repeats from South Africa where a total of 99 repeats have been described that can be attributed to 190 msp1α genotypes. While 22% of these repeats are also found in other countries, only two South African genotypes are also found in other countries; otherwise, the genotypes are unique to South Africa. CONCLUSIONS: Anaplasma marginale was prevalent in the Western Cape, KwaZulu-Natal and Mpumalanga and absent in the Northern Cape. Anaplasma centrale was prevalent in the Western Cape and KwaZulu-Natal and absent in the Northern Cape and Eastern Cape. None of the cattle in the study were known to be vaccinated with A. centrale, so finding positive cattle indicates that this organism appears to be naturally circulating in cattle. A diverse population of A. marginale strains are found in South Africa, with some msp1α genotypes widely distributed across the country, and others appearing only once in one province. This diversity should be taken into account in future vaccine development studies.


Assuntos
Anaplasma centrale/classificação , Anaplasma marginale/classificação , Anaplasmose/microbiologia , Doenças dos Bovinos/microbiologia , Coinfecção/veterinária , Variação Genética , Genótipo , Anaplasma centrale/genética , Anaplasma centrale/isolamento & purificação , Anaplasma marginale/genética , Anaplasma marginale/isolamento & purificação , Anaplasmose/epidemiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Bovinos , Doenças dos Bovinos/epidemiologia , Chaperonina 60/genética , Coinfecção/epidemiologia , Coinfecção/microbiologia , Epidemiologia Molecular , Reação em Cadeia da Polimerase Multiplex , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , África do Sul/epidemiologia
4.
Onderstepoort J Vet Res ; 84(1): e1-e9, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28155283

RESUMO

Several nucleic acid-based assays have been developed for detecting Anaplasma marginale and Anaplasma centrale in vectors and hosts, making the choice of method to use in endemic areas difficult. We evaluated the ability of the reverse line blot (RLB) hybridisation assay, two nested polymerase chain reaction (nPCR) assays and a duplex real-time quantitative polymerase chain reaction (qPCR) assay to detect A. marginale and A. centrale infections in cattle (n = 66) in South Africa. The lowest detection limits for A. marginale plasmid DNA were 2500 copies by the RLB assay, 250 copies by the nPCR and qPCR assays and 2500, 250 and 25 copies of A. centrale plasmid DNA by the RLB, nPCR and qPCR assays respectively. The qPCR assay detected more A. marginale- and A. centrale-positive samples than the other assays, either as single or mixed infections. Although the results of the qPCR and nPCR tests were in agreement for the majority (38) of A. marginale-positive samples, 13 samples tested negative for A. marginale using nPCR but positive using qPCR. To explain this discrepancy, the target sequence region of the nPCR assay was evaluated by cloning and sequencing the msp1ß gene from selected field samples. The results indicated sequence variation in the internal forward primer (AM100) area amongst the South African A. marginale msp1ß sequences, resulting in false negatives. We propose the use of the duplex qPCR assay in future studies as it is more sensitive and offers the benefits of quantification and multiplex detection of both Anaplasma spp.


Assuntos
Anaplasma centrale , Anaplasma marginale , Anaplasmose/diagnóstico , Doenças dos Bovinos/diagnóstico , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Anaplasma centrale/genética , Anaplasma marginale/genética , Anaplasmose/microbiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , DNA Bacteriano/genética , Hibridização de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
5.
Ticks Tick Borne Dis ; 5(6): 624-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024014

RESUMO

Bovine anaplasmosis caused by infection of cattle with Anaplasma marginale has been considered to be endemic in South Africa, an assumption based primarily on the distribution of the tick vectors of A. marginale and serological studies on the prevalence of anaplasmosis in Limpopo, Free State, and North West. However, molecular evidence of the distribution of anaplasmosis has only been reported in the Free State province. In order to establish effective control measures for anaplasmosis, epidemiological surveys are needed to define the prevalence and distribution of A. marginale in South Africa. In addition, a proposed control strategy for anaplasmosis is the development of an A. marginale major surface protein 1a (MSP1a)-based vaccine. Nevertheless, regional variations of this gene would need to be characterized prior to vaccine development for South Africa. The objectives of the present study were therefore to conduct a national survey of the prevalence of A. marginale in South Africa, followed by an evaluation of the diversity and evolution of msp1a in South African strains of A. marginale. To accomplish these objectives, species-specific PCR was used to test 250 blood samples from cattle collected from all South African provinces (including 26 districts and municipalities), except the Free State province where similar studies were reported previously. The prevalence of A. marginale ranged from 65% to 100%, except in Northern Cape province where A. marginale was not detected. A correlation was found between the prevalence and genetic diversity of A. marginale MSP1a. Additionally, the genetic diversity of the A. marginale MSP1a was found to evolve under negative and positive selection, and 23 new tandem repeats in South Africa were shown to have evolved from the extant tandem repeat 4. Despite the MSP1a genetic variability, some types of tandem repeats were found to be conserved among the A. marginale strains, and low-variable peptides in MSP1a tandem repeats were subsequently identified. The results of this research confirmed that anaplasmosis is endemic in South Africa. The results of the molecular characterization of the MSP1a can then be used as the basis for development of new and novel vaccines for anaplasmosis control in South Africa.


Assuntos
Anaplasma marginale/genética , Anaplasmose/epidemiologia , Doenças dos Bovinos/microbiologia , Variação Genética , Doenças Transmitidas por Carrapatos/microbiologia , Sequência de Aminoácidos , Anaplasma marginale/classificação , Anaplasma marginale/isolamento & purificação , Anaplasmose/microbiologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , África do Sul/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA