RESUMO
Some species mount a robust antibody response despite having limited genome-encoded combinatorial diversity potential. Cows are unusual in having exceptionally long CDR H3 loops and few V regions, but the mechanism for creating diversity is not understood. Deep sequencing reveals that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded minidomains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a ß strand "stalk" that supports a structurally diverse, disulfide-bonded "knob" domain. Diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias toward mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of ultralong CDR H3s that fold into a diversity of minidomains generated through combinations of somatically generated disulfides.
Assuntos
Diversidade de Anticorpos , Bovinos/imunologia , Regiões Determinantes de Complementaridade , Imunoglobulina G/genética , Imunoglobulina M/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Cisteína/análise , Cisteína/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/química , Imunoglobulina M/química , Camundongos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Alinhamento de SequênciaRESUMO
The generation of broadly neutralizing antibodies (bnAbs) to conserved epitopes on HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The animal models commonly used for HIV do not reliably produce a potent broadly neutralizing serum antibody response, with the exception of cows. Cows have previously produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models, other engineered immunogens were shown to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n = 4) with two regimens of V2-apex focusing Env immunogens to investigate whether antibody responses could be generated to the V2-apex on Env. Group 1 was immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 was immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows, respectively, and showed moderate breadth and potency. Potent and broad responses in this study developed much later than previous cow immunizations that elicited CD4bs bnAbs responses and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target more than one broadly neutralizing epitope on the HIV surface reveals the generality of elongated structures for the recognition of highly glycosylated proteins. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Assuntos
Vacinas contra a AIDS , Anticorpos Neutralizantes , Anticorpos Anti-HIV , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Animais , Bovinos , Anticorpos Anti-HIV/imunologia , Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Anticorpos Neutralizantes/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Epitopos/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Feminino , Imunização , Humanos , Anticorpos Amplamente Neutralizantes/imunologia , Vírus da Imunodeficiência Símia/imunologiaRESUMO
Cows produce antibodies with a disulfide-bonded antigen-binding domain embedded within ultralong heavy chain third complementarity determining regions. This "knob" domain is analogous to natural cysteine-rich peptides such as knottins in that it is small and stable but can accommodate diverse loops and disulfide bonding patterns. We immunized cattle with SARS-CoV-2 spike and found ultralong CDR H3 antibodies that could neutralize several viral variants at picomolar IC50 potencies in vitro and could protect from disease in vivo. The independent CDR H3 peptide knobs were expressed and maintained the properties of the parent antibodies. The knob interaction with SARS-CoV-2 spike was revealed by electron microscopy, X-ray crystallography, NMR spectroscopy, and mass spectrometry and established ultralong CDR H3-derived knobs as the smallest known recombinant independent antigen-binding fragment. Unlike other vertebrate antibody fragments, these knobs are not reliant on the immunoglobulin domain and have potential as a new class of therapeutics.
Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Bovinos , Anticorpos , Fragmentos Fab das Imunoglobulinas/genética , DissulfetosRESUMO
Studies of immune responses elicited by bovine viral diarrhea virus (BVDV) vaccines have primarily focused on the characterization of neutralizing B cell and CD4+ T cell epitopes. Despite the availability of commercial vaccines for decades, BVDV prevalence in cattle has remained largely unaffected. There is limited knowledge regarding the role of BVDV-specific CD8+ T cells in immune protection, and indirect evidence suggests that they play a crucial role during BVDV infection. In this study, the presence of BVDV-specific CD8+ T cells that are highly cross-reactive in cattle was demonstrated. Most importantly, novel potent IFN-γ-inducing CD8+ T cell epitopes were identified from different regions of BVDV polyprotein. Eight CD8+ T cell epitopes were identified from the following structural BVDV Ags: Erns, E1, and E2 glycoproteins. In addition, from nonstructural BVDV Ags Npro, NS2-3, NS4A-B, and NS5A-B, 20 CD8+ T cell epitopes were identified. The majority of these IFN-γ-inducing CD8+ T cell epitopes were found to be highly conserved among more than 200 strains from BVDV-1 and -2 genotypes. These conserved epitopes were also validated as cross-reactive because they induced high recall IFN-γ+CD8+ T cell responses ex vivo in purified bovine CD8+ T cells isolated from BVDV-1- and -2-immunized cattle. Altogether, 28 bovine MHC class I-binding epitopes were identified from key BVDV Ags that can elicit broadly reactive CD8+ T cells against diverse BVDV strains. The data presented in this study will lay the groundwork for the development of a contemporary CD8+ T cell-based BVDV vaccine capable of addressing BVDV heterogeneity more effectively than current vaccines.
Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina/imunologia , Linfócitos T CD8-Positivos/imunologia , Vírus da Diarreia Viral Bovina/fisiologia , Epitopos de Linfócito T/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/imunologia , Animais , Bovinos , Células Cultivadas , Sequência Conservada/genética , Reações Cruzadas , Epitopos de Linfócito T/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferon gama/metabolismo , Ligação Proteica , Proteínas do Envelope Viral/genética , Proteínas não Estruturais Virais/genéticaRESUMO
No immunogen to date has reliably elicited broadly neutralizing antibodies to HIV in humans or animal models. Advances in the design of immunogens that antigenically mimic the HIV envelope glycoprotein (Env), such as the soluble cleaved trimer BG505 SOSIP, have improved the elicitation of potent isolate-specific antibody responses in rabbits and macaques, but so far failed to induce broadly neutralizing antibodies. One possible reason for this failure is that the relevant antibody repertoires are poorly suited to target the conserved epitope regions on Env, which are somewhat occluded relative to the exposed variable epitopes. Here, to test this hypothesis, we immunized four cows with BG505 SOSIP. The antibody repertoire of cows contains long third heavy chain complementary determining regions (HCDR3) with an ultralong subset that can reach more than 70 amino acids in length. Remarkably, BG505 SOSIP immunization resulted in rapid elicitation of broad and potent serum antibody responses in all four cows. Longitudinal serum analysis for one cow showed the development of neutralization breadth (20%, n = 117 cross-clade isolates) in 42 days and 96% breadth (n = 117) at 381 days. A monoclonal antibody isolated from this cow harboured an ultralong HCDR3 of 60 amino acids and neutralized 72% of cross-clade isolates (n = 117) with a potent median IC50 of 0.028 µg ml-1. Breadth was elicited with a single trimer immunogen and did not require additional envelope diversity. Immunization of cows may provide an avenue to rapidly generate antibody prophylactics and therapeutics to address disease agents that have evolved to avoid human antibody responses.
Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/isolamento & purificação , Bovinos/imunologia , HIV/imunologia , Imunização , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Células HEK293 , Proteína gp160 do Envelope de HIV/imunologia , HumanosRESUMO
Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFß) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells.
Assuntos
Anti-Inflamatórios/metabolismo , Proteínas de Artrópodes/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/parasitologia , Saliva/metabolismo , Infestações por Carrapato/parasitologia , Carrapatos/patogenicidade , Animais , Proteínas de Artrópodes/genética , Feminino , Células HEK293 , Interações Hospedeiro-Parasita , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Infestações por Carrapato/imunologia , Infestações por Carrapato/metabolismoRESUMO
The persistence of African swine fever virus (ASFV) in endemic areas, with small-scale but regular outbreaks in domestic pigs, is not well understood. ASFV has not been detected using conventional diagnosis in these pigs or adjacent populations of resistant African wild pigs, that could act as potential carriers during the outbreaks. However, such data are crucial for the design of evidence-based control strategies. We conducted cross-sectional (1107 pigs) and longitudinal (100 pigs) monitoring of ASFV prevalence in local pigs in Kenya and Uganda. The horizontal survey revealed no evidence of ASFV in the serum or blood using either conventional or real-time PCR. One pig consistently tested positive using ELISA, but negative using PCR assays on blood. Interestingly, the isotype of the antibodies from this animal were strongly IgA biased relative to control domestic pigs and warthogs, suggesting a role for mucosal immunity. The tissues from this pig were positive by PCR following post-mortem. Internal organ tissues of 44 healthy pigs (28 sentinel pigs and 16 pigs from slaughter slabs) were tested with four different PCR assays; 15.9â% were positive for ASFV suggesting that healthy pigs carrying ASFV exist in the swine population in the study area. P72 and p54 genotyping of ASFV revealed very limited diversity: all were classified in genotype IX at both loci, as were virtually all viruses causing recent ASF outbreaks in the region. Our study suggests that carrier pigs may play a role in ASF disease outbreaks, although the triggers for outbreaks remain unclear and require further investigation. This study significantly increases scientific knowledge of the epidemiology of ASF in the field in Africa, which will contribute to the design of effective surveillance and control strategies.
Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , África Oriental/epidemiologia , Febre Suína Africana/diagnóstico , Febre Suína Africana/epidemiologia , Febre Suína Africana/transmissão , Vírus da Febre Suína Africana/classificação , Vírus da Febre Suína Africana/genética , Criação de Animais Domésticos , Animais , Doenças Assintomáticas , Estudos Transversais , Surtos de Doenças , Genótipo , Quênia/epidemiologia , Suínos , Uganda/epidemiologiaRESUMO
BACKGROUND: Dendritic cells (DC) are important antigen presentation cells that monitor, process, and present antigen to T cells. Viruses that infect DC can have a devastating impact on the immune system. In this study, the ability of bovine viral diarrhea virus (BVDV) to replicate and produce infectious virus in monocyte-derived dendritic cells (Mo-DC) and monocytes was studied. The study also examined the effect of BVDV infection on Mo-DC expression of cell surface markers, including MHCI, MHCII, and CD86, which are critical for DC function in immune response. METHODS: Peripheral blood mononuclear cells (PBMCs) were isolated from bovine blood through gradient centrifugation. The adherent monocytes were isolated from PBMCs and differentiated into Mo-DC using bovine recombinant interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GMCSF). To determine the effect of BVDV on Mo-DC, four strains of BVDV were used including the severe acute non-cytopathic (ncp) BVDV2a-1373; moderate acute ncp BVDV2a 28508-5; and a homologous virus pair [i.e., cytopathic (cp) BVDV1b TGAC and ncp BVDV1b TGAN]. The Cooper strain of bovine herpesvirus 1 (BHV1) was used as the control virus. Mo-DC were infected with one of the BVDV strains or BHV-1 and were subsequently examined for virus replication, virus production, and the effect on MHCI, MHCII, and CD86 expression. RESULTS: The ability of monocytes to produce infectious virus reduced as monocytes differentiated to Mo-DC, and was completely lost at 120 hours of maturation. Interestingly, viral RNA increased throughout the course of infection in Mo-DC, and the viral non-structural (NS5A) and envelope (E2) proteins were expressed. The ncp strains of BVDV down-regulated while cp strain up-regulated the expression of the MHCI, MHCII, and CD86 on Mo-DC. CONCLUSIONS: The study revealed that the ability of Mo-DC to produce infectious virus was reduced with its differentiation from monocytes to Mo-DC. The inability to produce infectious virus may be due to a hindrance of virus packaging or release mechanisms. Additionally, the study demonstrated that ncp BVDV down-regulated and cp BVDV up-regulated the expression of Mo-DC cell surface markers MHCI, MHCII, and CD86, which are important in the mounting of immune responses.
Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Vírus da Diarreia Viral Bovina Tipo 1/imunologia , Vírus da Diarreia Viral Bovina Tipo 1/fisiologia , Monócitos/imunologia , Monócitos/virologia , Replicação Viral , Animais , Antígeno B7-2/análise , Bovinos , Células Cultivadas , Células Dendríticas/química , Antígenos de Histocompatibilidade Classe I/análise , Antígenos de Histocompatibilidade Classe II/análise , Monócitos/química , FenótipoRESUMO
The lipid nanoparticle (LNP) mRNA vaccine was first tested through clinic but suffered from relatively low RNA payloads and poor temperature stability. Our lab patented a protamine-coated particle approach for temperature-stabilizing DNA vaccines, translating this successfully to the clinic. In subsequent work, we have characterized RNA interaction and delivery by zinc oxide nanoparticles, filing a patent most recently entitled RNA-stabilizing nanoparticles, similarly utilizing protamine-coated zinc oxide nanoparticles for RNA. Here, we present this data for the first time. Briefly, ZnO, ZnO-protamine, and ZnO-protamine-RNA were characterized by size and zeta potential analyses and the RNA-loaded nanoparticles were visualized by transmission electron microscopy. UV spectroscopic analysis demonstrated up to 95-98% loading efficiency with protamine and approximately 75% loading efficiency with LL37, another cationic antiviral peptide. Elution of the RNA isolated from the particles afforded a calculation in three independent trials where RNA payloads ranged from 18 to 45 µg of RNA per 0.5 mg of coated particles. Circular dichroism (CD) analysis indicated that binding of RNA to ZnO NPs stabilized, enhancing the pattern with a clear dependence on the RNA:ZnO stoichiometry. Enhanced temperature stability was shown by differential scanning calorimetry (DSC), gel electrophoresis, and in vitro mRNA expression analysis. Using poly I:C RNA with a well-defined melting point (64.3 ± 0.32 °C), formation of the ZnO:RNA complex increased the RNA melting point (70.9 ± 0.62 °C). After refrigerated or room-temperature storage or incubation at 30, 40, or 50 °C, RNA comigration with the control RNA was recovered from all samples, exposed to either 14 or 100 nm ZnO, and coated with protamine. Furthermore, the ZnO-protamine-mRNA samples retained significantly higher expression activity when incubated at these elevated temperatures. Finally, the ZnO-protamine-mRNA was functionally active for in vitro translation, in cell extracts, and in cells for expression of GFP, luciferase, and COVID spike protein. These data support further preclinical development of ZnO-protamine-mRNA.
RESUMO
The study of immunogens capable of eliciting broadly neutralizing antibodies (bnAbs) is crucial for the development of an HIV vaccine. To date, only cows, making use of their ultralong CDRH3 loops, have reliably elicited bnAbs following immunization with HIV Envelope trimers. Antibody responses to the CD4 binding site have been readily elicited by immunization of cows with a stabilized Env trimer of the BG505 strain and, with more difficulty, to the V2-apex region of Env with a cocktail of trimers. Here, we sought to determine whether the BG505 Env trimer could be engineered to generate new bnAb specificities in cows. Since the cow CD4 binding site bnAbs bind to monomeric BG505 gp120, we also sought to determine whether gp120 immunization alone might be sufficient to induce bnAbs. We found that engineering the CD4 binding site by mutation of a key binding residue of BG505 HIV Env resulted in a reduced bnAb response that took more immunizations to develop. Monoclonal antibodies isolated from one animal were directed to the V2-apex, suggesting a re-focusing of the bnAb response. Immunization with monomeric BG505 g120 generated no serum bnAb responses, indicating that the ultralong CDRH3 bnAbs are only elicited in the context of the trimer in the absence of many other less restrictive epitopes presented on monomeric gp120. The results support the notion of a hierarchy of epitopes on HIV Env and suggest that, even with the presence in the cow repertoire of ultralong CDRH3s, bnAb epitopes are relatively disfavored.
RESUMO
The generation of broadly neutralizing antibodies (bnAbs) to specific HIV epitopes of the HIV Envelope (Env) is one of the cornerstones of HIV vaccine research. The current animal models we use have been unable to reliable produce a broadly neutralizing antibody response, with the exception of cows. Cows have rapidly and reliably produced a CD4 binding site response by homologous prime and boosting with a native-like Env trimer. In small animal models other engineered immunogens previously have been able to focus antibody responses to the bnAb V2-apex region of Env. Here, we immunized two groups of cows (n=4) with two regiments of V2-apex focusing immunogens to investigate whether antibody responses could be directed to the V2-apex on Env. Group 1 were immunized with chimpanzee simian immunodeficiency virus (SIV)-Env trimer that shares its V2-apex with HIV, followed by immunization with C108, a V2-apex focusing immunogen, and finally boosted with a cross-clade native-like trimer cocktail. Group 2 were immunized with HIV C108 Env trimer followed by the same HIV trimer cocktail as Group 1. Longitudinal serum analysis showed that one cow in each group developed serum neutralizing antibody responses to the V2-apex. Eight and 11 bnAbs were isolated from Group 1 and Group 2 cows respectively. The best bnAbs had both medium breadth and potency. Potent and broad responses developed later than previous CD4bs cow bnAbs and required several different immunogens. All isolated bnAbs were derived from the ultralong CDRH3 repertoire. The finding that cow antibodies can target multiple broadly neutralizing epitopes on the HIV surface reveals important insight into the generation of immunogens and testing in the cow animal model. The exclusive isolation of ultralong CDRH3 bnAbs, despite only comprising a small percent of the cow repertoire, suggests these antibodies outcompete the long and short CDRH3 antibodies during the bnAb response.
Assuntos
Saúde Ambiental , Pesquisa Interdisciplinar , Saúde Única , Zoonoses/prevenção & controle , Animais , HumanosRESUMO
Natural planned exposure (NPE) remains one of the most common methods in swine herds to boost lactogenic immunity against rotaviruses. However, the efficacy of NPE protocols in generating lactogenic immunity has not been investigated before. A longitudinal study was conducted to investigate the dynamics of genotype-specific antibody responses to different doses (3, 2 and 1) of Rotavirus A (RVA) NPE (genotypes G4, G5, P[7] and P[23]) in gilts and the transfer of lactogenic immunity to their piglets. Group 1 gilts received three doses of NPE at 5, 4 and 3 weeks pre-farrow (WPF), group 2 received two doses at 5 and 3 WPF, group 3 received one dose at 5 WPF, and group 4 received no NPE (control group). VP7 (G4 and G5) and truncated VP4* (P[7] and P[23]) antigens of RVA were expressed in mammalian and bacterial expression systems, respectively, and used to optimize indirect ELISAs to determine antibody levels against RVA in gilts and piglets. In day-0 colostrum samples, group 1 had significantly higher IgG titers compared to the control group for all four antigens, and either significantly or numerically higher IgG titers than groups 2 and 3. Group 1 also had significantly higher colostrum IgA levels than the control group for all antigens (except G4), and either significantly or numerically higher IgA levels compared to groups 2 and 3. In piglet serum, group 1 piglets had higher IgG titers for all four antigens at day 0 than the other groups. Importantly, RVA NPE stimulated antibodies in all groups regardless of the treatment doses and prevented G4, G5, P[7] and P[23] RVA fecal shedding prior to weaning in piglets in the absence of viral challenge. The G11 and P[34] RVA genotypes detected from pre-weaning piglets differed at multiple amino acid positions with parent NPE strains. In conclusion, the results of this study suggest that the group 1 NPE regimen (three doses of NPE) resulted in the highest anti-RVA antibody (IgG and IgA) levels in the colostrum/milk, and the highest IgG levels in piglet serum.
RESUMO
Introduction: African swine fever virus (ASFV) is a pathogen of great economic importance given that continues to threaten the pork industry worldwide, but there is no safe vaccine or treatment available. Development of a vaccine is feasible as immunization of pigs with some live attenuated ASFV vaccine candidates can confer protection, but safety concerns and virus scalability are challenges that must to be addressed. Identification of protective ASFV antigens is needed to inform the development of efficacious subunit vaccines. Methods: In this study, replication-incompetent adenovirus-vectored multicistronic ASFV antigen expression constructs that covered nearly 100% of the ASFV proteome were generated and validated using ASFV convalescent serum. Swine were immunized with a cocktail of the expression constructs, designated Ad5-ASFV, alone or formulated with either Montanide ISA-201™ (ASFV-ISA-201) or BioMize® adjuvant (ASFV-BioMize). Results: These constructs primed strong B cell responses as judged by anti-pp62-specific IgG responses. Notably, the Ad5-ASFV and the Ad5-ASFV ISA-201, but not the Ad5-ASFV BioMize®, immunogens primed significantly (p < 0.0001) higher anti-pp62-specific IgG responses compared with Ad5-Luciferase formulated with Montanide ISA-201™ adjuvant (Luc-ISA-201). The anti-pp62-specific IgG responses underwent significant (p < 0.0001) recall in all the vaccinees after boosting and the induced antibodies strongly recognized ASFV (Georgia 2007/1)-infected primary swine cells. However, following challenge by contact spreaders, only one pig nearly immunized with the Ad5-ASFV cocktail survived. The survivor had no typical clinical symptoms, but had viral loads and lesions consistent with chronic ASF. Discussion: Besides the limited sample size used, the outcome suggests that in vivo antigen expression, but not the antigen content, might be the limitation of this immunization approach as the replication-incompetent adenovirus does not amplify in vivo to effectively prime and expand protective immunity or directly mimic the gene transcription mechanisms of attenuated ASFV. Addressing the in vivo antigen delivery limitations may yield promising outcomes.
RESUMO
Specific components of both the innate and adaptive immune systems of channel catfish were evaluated after supplementation of culture media with arginine (ARG) and/or glutamine (GLN). Primary cell cultures of head-kidney macrophages (MØ) were used for phagocytic and bactericidal assays against Edwardsiella ictaluri. Additionally, proliferation assays were conducted with naïve peripheral blood lymphocytes (PBL) exposed to non-specific mitogens. To indirectly assess amino acid utilization of both MØ and PBL, amino acid levels, with emphasis on ARG and GLN, were evaluated in the basal medium before and after activation or mitogenic exposure. After bactericidal and proliferation assays, the sum of the media free amino acid pool significantly (P < 0.05) decreased 23% and 45%, respectively. Glutamine levels in medium decreased by 38% and ARG by 18% during the bactericidal assay. Also, decreases of 52 and 46% from initial values were found after the proliferation assay for GLN and ARG, respectively. Macrophage phagocytosis and killing ability was significantly (P < 0.05) enhanced by ARG supplementation to culture media regardless of GLN supplementation. Proliferation of naïve T- and B-lymphocytes upon mitogenic exposure was significantly (P < 0.05) enhanced by supplementing ARG and GLN to the media, but limited synergistic effects were observed. These results suggest that in vitro, ARG and GLN are important substrates and immunomodulators of both innate and adaptive responses in fish leukocytes, and further highlights the potential use of ARG and GLN as immunonutrients in aquafeeds.
Assuntos
Arginina/administração & dosagem , Edwardsiella ictaluri/fisiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Glutamina/administração & dosagem , Ictaluridae/imunologia , Imunidade Adaptativa , Animais , Aquicultura , Suplementos Nutricionais , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Rim Cefálico/metabolismo , Rim Cefálico/microbiologia , Ictaluridae/microbiologia , Imunidade Inata , Macrófagos/metabolismo , Macrófagos/microbiologia , FagocitoseRESUMO
Channel catfish was used to investigate the enhancement of vaccine efficacy following dietary supplementation with arginine (ARG, 4% of diet), glutamine (GLN, 2% of diet), or a combination of both. After vaccination against Edwardsiella ictaluri, humoral and cellular immune responses, along with lymphoid organ responses were evaluated. E. ictaluri-specific antibody titers in plasma were higher (P < 0.05) in fish fed the supplemented diets compared to those fed the basal diet as early as 7 d post-vaccination (dpv). B-cell proportion in head-kidney was higher (P < 0.05) at 14 dpv in vaccinated fish fed the GLN diet. The responsiveness of spleen and head-kidney lymphocytes against E. ictaluri was enhanced (P < 0.05) by dietary supplementation of ARG or GLN at 14 dpv. Additionally, at 7 dpv, vaccinated fish fed the GLN diet had higher (P < 0.05) head kidney weights relative to the other dietary treatments, and vaccinated fish fed ARG-supplemented diets had higher (P < 0.05) protein content in this tissue. Results from this study suggest that dietary supplementation of ARG and GLN may improve specific cellular and humoral mechanisms, enhancing the acquired immunity in vaccinated channel catfish.
Assuntos
Arginina/administração & dosagem , Vacinas Bacterianas/imunologia , Edwardsiella ictaluri/fisiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/prevenção & controle , Glutamina/administração & dosagem , Ictaluridae/imunologia , Imunidade Adaptativa , Animais , Linfócitos B/imunologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/prevenção & controle , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Citometria de Fluxo/veterinária , Ictaluridae/microbiologia , Vacinas Atenuadas/imunologiaRESUMO
Rotaviruses (RVs) are endemic in swine populations, and all swine herds certainly have a history of RV infection and circulation. Rotavirus A (RVA) and C (RVC) are the most common among all RV species reported in swine. RVA was considered most prevalent and pathogenic in swine; however, RVC has been emerging as a significant cause of enteritis in newborn piglets. RV eradication from swine herds is not practically achievable, hence producers' mainly focus on minimizing the production impact of RV infections by reducing mortality and diarrhea. Since no intra-uterine passage of immunoglobulins occur in swine during gestation, newborn piglets are highly susceptible to RV infection at birth. Boosting lactogenic immunity in gilts by using vaccines and natural planned exposure (NPE) is currently the only way to prevent RV infections in piglets. RVs are highly diverse and multiple RV species have been reported from swine, which also contributes to the difficulties in preventing RV diarrhea in swine herds. Human RV-gut microbiome studies support a link between microbiome composition and oral RV immunogenicity. Such information is completely lacking for RVs in swine. It is not known how RV infection affects the functionality or structure of gut microbiome in swine. In this review, we provide a detailed overview of genotypic diversity of swine RVs, host-ranges, innate and adaptive immune responses to RVs, homotypic and heterotypic immunity to RVs, current methods used for RV management in swine herds, role of maternal immunity in piglet protection, and prospects of investigating swine gut microbiota in providing immunity against rotaviruses.
RESUMO
A longitudinal study was conducted to investigate the dynamics of genotype-specific (G6 and P[5]) antibody response to different doses (3, 2 and 1) of rotavirus C (RVC) natural planned exposure (NPE) in gilt serum, colostrum/milk and piglet serum, and compare with antibody response to rotavirus A NPE (RVA genotypes G4, G5, P[7] and P[23]). G6 and P[5] antigens of RVC were expressed in mammalian and bacterial cells, and used to develop individual indirect ELISAs. For both antigens, group 1 with 3 doses of NPE resulted in significantly higher IgG and IgA levels in colostrum compared to other groups. In piglet serum, group 1 P[5] IgG levels were significantly higher than other study groups at day 0 and 7. Piglet serum had higher IgA levels for group 1 piglets compared to other groups for both antigens. A comparison of colostrum antibody levels to rotavirus A (RVA) and RVC revealed that colostrum RVC IgG and IgA titers were lower than RVA titers irrespective of the G and P-type. Next generation sequencing (NGS) detected same RVC genotypes (G6 and P[5]) circulating in the piglet population under the window of lactogenic immunity. We conclude that the low RVC load in NPE material (real-time PCR Ct-values 32.55, 29.32 and 30.30) failed to induce sufficient maternal immunity in gilts (low colostrum RVC antibody levels) and passively prevent piglets from natural RVC infection in the farrowing room. To the best of our knowledge, this is the first study comparing differences in antibody response to porcine RVA and RVC in a commercial setting.
Assuntos
Infecções por Rotavirus , Rotavirus , Doenças dos Suínos , Animais , Suínos , Feminino , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Formação de Anticorpos , Estudos Longitudinais , Imunoglobulina G , Sus scrofa , Imunoglobulina ARESUMO
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161-169, p37859-867, p1501363-1371, and p1501463-1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161-169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859-867 and p1501363-1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463-1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
RESUMO
Over the last several years, there has been a great deal of progress in characterizing the role of dendritic cells (DCs) in the activation and modulation of B cells. DC-secreted chemokines can induce B cell trafficking to the lymph nodes. DC-produced survival factors such as B cell-activating factor of the TNF family and a proliferation-inducing ligand have been shown to be essential for B cell maturation, but have also been implicated in class-switch recombination and B cell lymphoma survival. Recently added to this list of DC-derived factors effecting B cells is IgA-inducing protein (IGIP). In this study, we characterize production of IGIP by human DCs, and examine its capacity to induce IgA class switching and differentiation of naive B cells in vitro. Monocyte-derived DCs were cultured in vitro with TLR agonists (TLR3, 4, 5, and 9) and other factors, including CD40 ligand, GM-CSF, and IL-4 as well as the neuropeptide vasoactive intestinal peptide. Under in vitro stimulation with vasoactive intestinal peptide and CD40L, IGIP mRNA expression could be up-regulated as much as 35-fold above nonstimulated samples within 12-48 h. Naive B cells cultured with exogenous recombinant human IGIP produced IgA in greater quantities than nonstimulated controls. Finally, we demonstrate that IGIP stimulation drives the production of mu-alpha switch circles from IgM(+)IgD(+) naive human B cells, indicating its role as an IgA switch factor.