Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Haematologica ; 108(11): 3068-3085, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317877

RESUMO

Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.


Assuntos
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mutação em Linhagem Germinativa , Sequência de Bases
2.
J Biol Chem ; 296: 100197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334883

RESUMO

Prolyl 4-hydroxylases (P4Hs) catalyze post-translational hydroxylation of peptidyl proline residues. In addition to collagen P4Hs and hypoxia-inducible factor P4Hs, a third P4H-the poorly characterized endoplasmic reticulum-localized transmembrane prolyl 4-hydroxylase (P4H-TM)-is found in animals. P4H-TM variants are associated with the familiar neurological HIDEA syndrome, but how these variants might contribute to disease is unknown. Here, we explored this question in a structural and functional analysis of soluble human P4H-TM. The crystal structure revealed an EF domain with two Ca2+-binding motifs inserted within the catalytic domain. A substrate-binding groove was formed between the EF domain and the conserved core of the catalytic domain. The proximity of the EF domain to the active site suggests that Ca2+ binding is relevant to the catalytic activity. Functional analysis demonstrated that Ca2+-binding affinity of P4H-TM is within the range of physiological Ca2+ concentration in the endoplasmic reticulum. P4H-TM was found both as a monomer and a dimer in the solution, but the monomer-dimer equilibrium was not regulated by Ca2+. The catalytic site contained bound Fe2+ and N-oxalylglycine, which is an analogue of the cosubstrate 2-oxoglutarate. Comparison with homologous P4H structures complexed with peptide substrates showed that the substrate-interacting residues and the lid structure that folds over the substrate are conserved in P4H-TM, whereas the extensive loop structures that surround the substrate-binding groove, generating a negative surface potential, are different. Analysis of the structure suggests that the HIDEA variants cause loss of P4H-TM function. In conclusion, P4H-TM shares key structural elements with other P4Hs while having a unique EF domain.


Assuntos
Dioxigenases/química , Prolil Hidroxilases/química , Cristalografia por Raios X , Motivos EF Hand , Humanos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
3.
Clin Genet ; 102(5): 444-450, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35908151

RESUMO

HIDEA syndrome is caused by biallelic pathogenic variants in P4HTM. The phenotype is characterized by muscular and central hypotonia, hypoventilation including obstructive and central sleep apneas, intellectual disability, dysautonomia, epilepsy, eye abnormalities, and an increased tendency to develop respiratory distress during pneumonia. Here, we report six new patients with HIDEA syndrome caused by five different biallelic P4HTM variants, including three novel variants. We describe two Finnish enriched pathogenic P4HTM variants and demonstrate that these variants are embedded within founder haplotypes. We review the clinical data from all previously published patients with HIDEA and characterize all reported P4HTM pathogenic variants associated with HIDEA in silico. All known pathogenic variants in P4HTM result in either premature stop codons, an intragenic deletion, or amino acid changes that impact the active site or the overall stability of P4H-TM protein. In all cases, normal P4H-TM enzyme function is expected to be lost or severely decreased. This report expands knowledge of the genotypic and phenotypic spectrum of the disease.


Assuntos
Códon sem Sentido , Deficiência Intelectual , Prolil Hidroxilases/metabolismo , Aminoácidos , Domínio Catalítico , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Hipotonia Muscular/genética , Fenótipo , Síndrome
4.
Genet Med ; 21(10): 2355-2363, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30940925

RESUMO

PURPOSE: A new syndrome with hypotonia, intellectual disability, and eye abnormalities (HIDEA) was previously described in a large consanguineous family. Linkage analysis identified the recessive disease locus, and genome sequencing yielded three candidate genes with potentially pathogenic biallelic variants: transketolase (TKT), transmembrane prolyl 4-hydroxylase (P4HTM), and ubiquitin specific peptidase 4 (USP4). However, the causative gene remained elusive. METHODS: International collaboration and exome sequencing were used to identify new patients with HIDEA and biallelic, potentially pathogenic, P4HTM variants. Segregation analysis was performed using Sanger sequencing. P4H-TM wild-type and variant constructs without the transmembrane region were overexpressed in insect cells and analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot. RESULTS: Five different homozygous or compound heterozygous pathogenic P4HTM gene variants were identified in six new and six previously published patients presenting with HIDEA. Hypoventilation, obstructive and central sleep apnea, and dysautonomia were identified as novel features associated with the phenotype. Characterization of three of the P4H-TM variants demonstrated yielding insoluble protein products and, thus, loss-of-function. CONCLUSIONS: Biallelic loss-of-function P4HTM variants were shown to cause HIDEA syndrome. Our findings enable diagnosis of the condition, and highlight the importance of assessing the need for noninvasive ventilatory support in patients.


Assuntos
Prolil Hidroxilases/genética , Transcetolase/genética , Proteases Específicas de Ubiquitina/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Exoma , Anormalidades do Olho/genética , Feminino , Humanos , Hipoventilação/genética , Deficiência Intelectual/genética , Mutação com Perda de Função/genética , Masculino , Hipotonia Muscular/genética , Linhagem , Fenótipo , Disautonomias Primárias/genética , Prolil Hidroxilases/metabolismo , Síndrome , Transcetolase/metabolismo , Sequenciamento do Exoma , Adulto Jovem
5.
J Neurochem ; 147(6): 764-783, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30261098

RESUMO

The close association of myelinated axons and their myelin sheaths involves numerous intercellular molecular interactions. For example, myelin-associated glycoprotein (MAG) mediates myelin-to-axon adhesion and signalling via molecules on the axonal surface. However, knowledge about intracellular binding partners of myelin proteins, including MAG, has remained limited. The two splice isoforms of MAG, S- and L-MAG, display distinct cytoplasmic domains and spatiotemporal expression profiles. We used yeast two-hybrid screening to identify interaction partners of L-MAG and found the dynein light chain DYNLL1 (also termed dynein light chain 8). DYNLL1 homodimers are known to facilitate dimerization of target proteins. L-MAG and DYNLL1 associate with high affinity, as confirmed with recombinant proteins in vitro. Structural analyses of the purified complex indicate that the DYNLL1-binding segment is localized close to the L-MAG C terminus, next to the Fyn kinase Tyr phosphorylation site. The crystal structure of the complex between DYNLL1 and its binding segment on L-MAG shows 2 : 2 binding in a parallel arrangement, indicating a heterotetrameric complex. The homology between L-MAG and previously characterized DYNLL1-ligands is limited, and some details of binding site interactions are unique for L-MAG. The structure of the complex between the entire L-MAG cytoplasmic domain and DYNLL1, as well as that of the extracellular domain of MAG, were modelled based on small-angle X-ray scattering data, allowing structural insights into L-MAG interactions on both membrane surfaces. Our data imply that DYNLL1 dimerizes L-MAG, but not S-MAG, through the formation of a specific 2 : 2 heterotetramer. This arrangement is likely to affect, in an isoform-specific manner, the functions of MAG in adhesion and myelin-to-axon signalling. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Read the Editorial Highlight for this article on page 712.


Assuntos
Dineínas/biossíntese , Glicoproteína Associada a Mielina/biossíntese , Animais , Axônios/fisiologia , Sítios de Ligação , Dineínas do Citoplasma , Dineínas/química , Dineínas/genética , Espaço Extracelular/metabolismo , Camundongos , Modelos Moleculares , Glicoproteína Associada a Mielina/química , Glicoproteína Associada a Mielina/genética , Fibras Nervosas/metabolismo , Fibras Nervosas/ultraestrutura , Neuroglia/fisiologia , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/metabolismo , Espalhamento de Radiação , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Raios X
6.
J Neurochem ; 145(6): 449-463, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29473168

RESUMO

The Shank proteins are crucial scaffolding elements of the post-synaptic density (PSD). One of the best-characterized domains in Shank is the PDZ domain, which binds to C-terminal segments of several other PSD proteins. We carried out a detailed structural analysis of Shank3 PDZ domain-peptide complexes, to understand determinants of binding affinity towards different ligand proteins. Ligand peptides from four different proteins were cocrystallized with the Shank3 PDZ domain, and binding affinities were determined calorimetrically. In addition to conserved class I interactions between the first and third C-terminal peptide residue and Shank3, side chain interactions of other residues in the peptide with the PDZ domain are important factors in defining affinity. Structural conservation suggests that the binding specificities of the PDZ domains from different Shanks are similar. Two conserved buried water molecules in PDZ domains may affect correct local folding of ligand recognition determinants. The solution structure of a tandem Shank3 construct containing the SH3 and PDZ domains showed that the two domains are close to each other, which could be of relevance, when recognizing and binding full target proteins. The SH3 domain did not affect the affinity of the PDZ domain towards short target peptides, and the schizophrenia-linked Shank3 mutation R536W in the linker between the domains had no effect on the structure or peptide interactions of the Shank3 SH3-PDZ unit. Our data show the spatial arrangement of two adjacent Shank domains and pinpoint affinity determinants for short PDZ domain ligands with limited sequence homology.


Assuntos
Proteínas do Tecido Nervoso/genética , Domínios PDZ/fisiologia , Densidade Pós-Sináptica/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Dicroísmo Circular , Cristalização , Simulação de Dinâmica Molecular , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Densidade Pós-Sináptica/química , Densidade Pós-Sináptica/fisiologia , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Espalhamento de Radiação , Esquizofrenia/genética , Água/metabolismo , Raios X
7.
Biochem Biophys Res Commun ; 490(3): 806-812, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28647360

RESUMO

The Shank family comprises three large multi-domain proteins playing central roles as protein scaffolds in the neuronal postsynaptic density. The Shank proteins are closely linked to neuropsychiatric diseases, such as autism spectrum disorders. One characteristic domain in the Shank family is the SH3 domain, assumed to play a role in protein-protein interactions; however, no specific ligand binding to any Shank SH3 domain has been described. We solved the crystal structure of the SH3 domain from Shank3 at sub-atomic resolution. While the structure presents the canonical SH3 domain fold, the binding site for proline-rich peptides is not conserved. In line with this, no binding of Pro-rich sequences by the Shank3 SH3 domain was observed. Sequence comparisons indicate that all Shank isoforms have similarly lost the classical Pro-rich peptide binding site from the SH3 domain. Whether the corresponding site in the Shank SH3 domains has evolved to bind a non-poly-Pro target sequence is currently not known. Our work provides an intriguing example of the evolution of a well-characterized protein-protein interaction domain within the context of multi-domain protein scaffolds, allowing the conservation of structural features, but losing canonical functional sites. The data are further discussed in light of known mutations in the SH3 domain or its vicinity in the different Shank isoforms.


Assuntos
Proteínas do Tecido Nervoso/química , Domínios de Homologia de src , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Ratos , Proteínas Recombinantes/química , Alinhamento de Sequência
8.
BMC Biochem ; 18(1): 7, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28511668

RESUMO

BACKGROUND: Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). RESULTS: We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. CONCLUSIONS: We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.


Assuntos
2',3'-Nucleotídeo Cíclico Fosfodiesterases/química , Evolução Molecular , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/fisiologia , Animais , Dicroísmo Circular , Células Eucarióticas/enzimologia , Anfioxos , Camundongos , Bainha de Mielina/enzimologia , Polinucleotídeo 5'-Hidroxiquinase/química , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Splicing de RNA , RNA de Transferência/genética , Saccharomyces cerevisiae , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Amino Acids ; 49(4): 747-759, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28044206

RESUMO

Collapsin response mediator protein 2 (CRMP-2) is a neuronal protein involved in axonal pathfinding. Intense research is focusing on its role in various neurological diseases. Despite a wealth of studies, not much is known about the molecular mechanisms of CRMP-2 function in vivo. The detailed structure-function relationships of CRMP-2 have also largely remained unknown, in part due to the fact that the available crystal structures lack the C-terminal tail, which is known to be a target for many post-translational modifications and protein interactions. Although CRMP-2, and other CRMPs, belong to the dihydropyrimidinase family, they have lost the enzymatic active site. Drug candidates for CRMP-2-related processes have come up during the recent years, but no reports of CRMP-2 complexes with small molecules have emerged. Here, CRMP-2 was studied at 1.25-Å resolution using X-ray crystallography. In addition, ligands were docked into the homotetrameric structure, and the C-terminal tail of CRMP-2 was produced recombinantly and analyzed. We have obtained the human CRMP-2 crystal structure at atomic resolution and could identify small-molecule binding pockets in the protein. Structures obtained in different crystal forms highlight flexible regions near possible ligand-binding pockets. We also used the CRMP-2 structure to analyze known or suggested post-translational modifications at the 3D structural level. The high-resolution CRMP-2 structure was also used for docking experiments with the sulfur amino acid metabolite lanthionine ketimine and its ester. We show that the C-terminal tail is intrinsically disordered, but it has conserved segments that may act as interaction sites. Our data provide the most accurate structural data on CRMPs to date and will be useful in further computational and experimental studies on CRMP-2, its function, and its binding to small-molecule ligands.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Proteínas do Tecido Nervoso/química , Processamento de Proteína Pós-Traducional , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química
10.
Nat Commun ; 15(1): 5360, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918375

RESUMO

Oxygen homeostasis is maintained in plants and animals by O2-sensing enzymes initiating adaptive responses to low O2 (hypoxia). Recently, the O2-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified. This could be because alternative modifications of N-terminal cysteine residues, including acetylation, prevent ADO-catalysed oxidation. Here we investigate the relationship between ADO-catalysed oxidation and NatA-catalysed acetylation of a broad range of protein sequences with N-terminal cysteines. We present evidence that human NatA catalyses N-terminal cysteine acetylation in vitro and in vivo. We then show that sequences downstream of the N-terminal cysteine dictate whether this residue is oxidised or acetylated, with ADO preferring basic and aromatic amino acids and NatA preferring acidic or polar residues. In vitro, the two modifications appear to be mutually exclusive, suggesting that distinct pools of N-terminal cysteine proteins may be acetylated or oxidised. These results reveal the sequence determinants that contribute to N-terminal cysteine protein modifications, with implications for O2-dependent protein stability and the hypoxic response.


Assuntos
Cisteína , Oxirredução , Estabilidade Proteica , Cisteína/metabolismo , Cisteína/química , Acetilação , Humanos , Oxigênio/metabolismo , Oxigênio/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Células HEK293
11.
JCI Insight ; 9(11)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855865

RESUMO

Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic ß cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Fator 1-alfa Nuclear de Hepatócito , Fator 4 Nuclear de Hepatócito , Regiões Promotoras Genéticas , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Regiões Promotoras Genéticas/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação da Expressão Gênica , Sítios de Ligação , Cristalografia por Raios X , Masculino , Feminino , Ligação Proteica
12.
Cancer Discov ; 13(6): 1478-1497, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36847506

RESUMO

Oncogenic mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 occur in a wide range of cancers, including acute myeloid leukemia (AML) and glioma. Mutant IDH enzymes convert 2-oxoglutarate (2OG) to (R)-2-hydroxyglutarate [(R)-2HG], an oncometabolite that is hypothesized to promote cellular transformation by dysregulating 2OG-dependent enzymes. The only (R)-2HG target that has been convincingly shown to contribute to transformation by mutant IDH is the myeloid tumor suppressor TET2. However, there is ample evidence to suggest that (R)-2HG has other functionally relevant targets in IDH-mutant cancers. Here, we show that (R)-2HG inhibits KDM5 histone lysine demethylases and that this inhibition contributes to cellular transformation in IDH-mutant AML and IDH-mutant glioma. These studies provide the first evidence of a functional link between dysregulation of histone lysine methylation and transformation in IDH-mutant cancers. SIGNIFICANCE: Mutant IDH is known to induce histone hypermethylation. However, it is not known if this hypermethylation is functionally significant or is a bystander effect of (R)-2HG accumulation in IDH-mutant cells. Here, we provide evidence that KDM5 inhibition by (R)-2HG contributes to mutant IDH-mediated transformation in AML and glioma. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Glioma , Leucemia Mieloide Aguda , Humanos , Histonas/metabolismo , Histona Desmetilases/genética , Mutação , Glutaratos , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Glioma/genética , Metilação de DNA , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo
13.
J Neurochem ; 123(4): 515-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22928743

RESUMO

2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is a quantitatively major enzyme in myelin, where it localizes to the non-compact regions and is bound to the membrane surface. Although its catalytic activity in vitro has been characterized, the physiological function and in vivo substrate of CNPase remain unknown. Especially the N-terminal domain has been poorly characterized; previously, we have shown it is involved in CNPase dimerization and RNA binding. Here, we show that purified CNPase binds to the calcium sensor protein calmodulin (CaM) in a calcium-dependent manner; the binding site is in the N-terminal domain of CNPase. CaM does not affect the phosphodiesterase activity of CNPase in vitro, nor does it influence polyadenylic acid binding. The colocalization of CNPase and CaM during Schwann cell myelination in culture was observed, and CaM antagonists induced the colocalization of CNPase with microtubules in differentiated CG-4 oligodendrocytes. An analysis of post-translational modifications of CNPase from rat brain revealed the presence of two novel phosphorylation sites on Tyr110 and Ser169 within the N-terminal domain. The results indicate a role for the N-terminal domain of CNPase in mediating multiple molecular interactions and provide a starting point for detailed structure-function studies on CNPase and its N-terminal domain.


Assuntos
2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase , Calmodulina/metabolismo , Estrutura Terciária de Proteína/fisiologia , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/química , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Calmodulina/genética , Cromatografia de Afinidade , Cromatografia em Gel/métodos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia , Técnicas de Cultura de Órgãos , Fosforilação/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Estrutura Terciária de Proteína/genética , Proteômica , Ratos , Células de Schwann/enzimologia , Ressonância de Plasmônio de Superfície
14.
Amino Acids ; 42(4): 1467-74, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21505824

RESUMO

Myelin is a tightly packed membrane multilayer in the nervous system, which harbours a specific set of quantitatively major proteins. All these proteins interact with the lipid bilayer, being either peripheral or integral membrane proteins. In this study, we examined the conformational properties of peptides from the myelin proteins P0, CNPase, MOBP, P2 and MOG, using trifluoroethanol and micelles of different detergents as membrane-like mimics. The peptides showed significant differences in their folding under the employed conditions, as evidenced by synchrotron radiation circular dichroism spectroscopy. Our experiments provide new structural information on the interactions between myelin proteins and membranes, using a simplified model system of synthetic peptides and micelles.


Assuntos
Dicroísmo Circular/métodos , Proteínas de Membrana/química , Proteínas da Mielina/química , Bainha de Mielina/química , Peptídeos/química , Dicroísmo Circular/instrumentação , Humanos , Conformação Proteica , Dobramento de Proteína
15.
Amino Acids ; 39(3): 859-69, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20238132

RESUMO

Most protein preparations require purification steps prior to biophysical analysis assessing protein stability, secondary structure and degree of folding. It was, therefore, the aim of this study to develop a system to separate and purify a protein from a commercially available medicinal product, recombinant human growth hormone (rhGH) and show preservation of conformation and function following the gel-based procedure. The rhGH was run on clear native (CN) gels and recovered from the gels by electroelution using D-Tube Dialyzer Midi under rigorous cooling. Melting point studies indicated preservation of the structural integrity. This finding was confirmed by synchrotron radiation circular dichroism spectroscopy (SRCD) revealing an identical folding pattern for the sample before and after electrophoretic separation and purification. Synchrotron small-angle X-ray scattering (SAXS) indicated that the sample was folded and monomeric, both before and after separation and purification, and that its shape corresponded well to the known crystal structure of GH. Binding properties of rhGH to a receptor-model system before and after clear native electrophoresis were comparable. This analytical and preparative approach to purify and concentrate a protein preserving conformation and function may be helpful for many applications in analytical, protein and stereochemistry.


Assuntos
Hormônio do Crescimento/química , Hormônio do Crescimento/isolamento & purificação , Receptores da Somatotropina/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Humanos , Dados de Sequência Molecular , Mapeamento de Peptídeos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Receptores da Somatotropina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
16.
Amino Acids ; 39(1): 59-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19855925

RESUMO

Myelin basic protein (MBP) is present between the cytoplasmic leaflets of the compact myelin membrane in both the peripheral and central nervous systems, and characterized to be intrinsically disordered in solution. One of the best-characterized protein ligands for MBP is calmodulin (CaM), a highly acidic calcium sensor. We pulled down MBP from human brain white matter as the major calcium-dependent CaM-binding protein. We then used full-length brain MBP, and a peptide from rodent MBP, to structurally characterize the MBP-CaM complex in solution by small-angle X-ray scattering, NMR spectroscopy, synchrotron radiation circular dichroism spectroscopy, and size exclusion chromatography. We determined 3D structures for the full-length protein-protein complex at different stoichiometries and detect ligand-induced folding of MBP. We also obtained thermodynamic data for the two CaM-binding sites of MBP, indicating that CaM does not collapse upon binding to MBP, and show that CaM and MBP colocalize in myelin sheaths. In addition, we analyzed the post-translational modifications of rat brain MBP, identifying a novel MBP modification, glucosylation. Our results provide a detailed picture of the MBP-CaM interaction, including a 3D model of the complex between full-length proteins.


Assuntos
Calmodulina/química , Proteína Básica da Mielina/química , Animais , Encéfalo , Bovinos , Células Cultivadas , Humanos , Ligantes , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Suínos , Termodinâmica
17.
Sci Rep ; 9(1): 642, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679613

RESUMO

Compact myelin forms the basis of nerve insulation essential for higher vertebrates. Dozens of myelin membrane bilayers undergo tight stacking, and in the peripheral nervous system, this is partially enabled by myelin protein zero (P0). Consisting of an immunoglobulin (Ig)-like extracellular domain, a single transmembrane helix, and a cytoplasmic extension (P0ct), P0 harbours an important task in ensuring the integrity of compact myelin in the extracellular compartment, referred to as the intraperiod line. Several disease mutations resulting in peripheral neuropathies have been identified for P0, reflecting its physiological importance, but the arrangement of P0 within the myelin ultrastructure remains obscure. We performed a biophysical characterization of recombinant P0ct. P0ct contributes to the binding affinity between apposed cytoplasmic myelin membrane leaflets, which not only results in changes of the bilayer properties, but also potentially involves the arrangement of the Ig-like domains in a manner that stabilizes the intraperiod line. Transmission electron cryomicroscopy of native full-length P0 showed that P0 stacks lipid membranes by forming antiparallel dimers between the extracellular Ig-like domains. The zipper-like arrangement of the P0 extracellular domains between two membranes explains the double structure of the myelin intraperiod line. Our results contribute to the understanding of PNS myelin, the role of P0 therein, and the underlying molecular foundation of compact myelin stability in health and disease.


Assuntos
Membrana Celular/metabolismo , Proteína P0 da Mielina/química , Proteína P0 da Mielina/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica
18.
Science ; 363(6432): 1217-1222, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872525

RESUMO

Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG-independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate.


Assuntos
Cromatina/metabolismo , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Animais , Hipóxia Celular , Células HEK293 , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Metilação , Camundongos , Proteínas Nucleares/genética
19.
Data Brief ; 20: 1912-1916, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30294643

RESUMO

By far most macromolecular crystallographic data collection and experimental phasing is nowadays carried out using synchrotron radiation. Here, we present two crystallographic datasets collected on a home-source X-ray diffractometer, which can per se be use to experimentally solve the atomic-resolution crystal structure of the Src homology 3(SH3)-like domain from the postsynaptic protein Shank3. The refined structure was described in the article "Structure of an unconventional SH3 domain from the postsynaptic density protein Shank3 at ultrahigh resolution" (Ponna et al., 2017) [1]. Crystals of the Shank3 SH3 domain were derivatized through soaking in 1 M sodium iodide prior to diffraction data collection at a wavelength of 1.54 Å. High-resolution data are reported for a native crystal to 1.01 Šand an iodide-derivatized one to 1.60 Å. The crystals suffered from several anomalies affecting experimental phasing: a high fraction (34-40%) of pseudomerohedral twinning, significant pseudotranslational symmetry (> 15%) with the operator 0.5,0,0.5, and a low solvent content. Twinning with the operator h,-k,-l is made possible by the space group P21 coupled with a unit cell ß angle of 90.0°. The data can be used to repeat and optimize derivatization and phasing procedures, to understand halide interactions with protein surfaces, to promote the use of home X-ray sources for protein structure determination, as well as for educational purposes and protocol development.

20.
J Mol Biol ; 430(18 Pt B): 3081-3092, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-29981745

RESUMO

Histone lysine demethylases (KDMs) are 2-oxoglutarate-dependent dioxygenases (2-OGDDs) that regulate gene expression by altering chromatin structure. Their dysregulation has been associated with many cancers. We set out to study the catalytic and inhibitory properties of human KDM4A, KDM4B, KDM5B, KDM6A and KDM6B, aiming in particular to reveal which of these enzymes are targeted by cancer-associated 2-oxoglutarate (2-OG) analogues. We used affinity-purified insect cell-produced enzymes and synthetic peptides with trimethylated lysines as substrates for the in vitro enzyme activity assays. In addition, we treated breast cancer cell lines with cell-permeable forms of 2-OG analogues and studied their effects on the global histone methylation state. Our data show that KDMs have substrate specificity. Among the enzymes studied, KDM5B had the highest affinity for the peptide substrate but the lowest affinity for the 2-OG and the Fe2+ cosubstrate/cofactors. R-2-hydroxyglutarate (R-2HG) was the most efficient inhibitor of KDM6A, KDM4A and KDM4B, followed by S-2HG. This finding was supported by accumulations of the histone H3K9me3 and H3K27me3 marks in cells treated with the cell-permeable forms of these compounds. KDM5B was especially resistant to inhibition by R-2HG, while citrate was the most efficient inhibitor of KDM6B. We conclude that KDM catalytic activity is susceptible to inhibition by tumorigenic 2-OG analogues and suggest that the inhibition of KDMs is involved in the disease mechanism of cancers in which these compounds accumulate, such as the isocitrate dehydrogenase mutations.


Assuntos
Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Histonas/metabolismo , Ácidos Cetoglutáricos/farmacologia , Ativação Enzimática , Humanos , Ácidos Cetoglutáricos/química , Cinética , Metilação/efeitos dos fármacos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA