RESUMO
BACKGROUND: Invasive green crabs contain high-quality proteins that have potential as functional ingredients in formulated foods. This study evaluated the functional properties and compositional characteristics of green crab proteins recovered by isoelectric solubilization/precipitation (ISP). RESULTS: Mechanically separated green crab mince (control) was solubilized at pH 2 (PP2) and pH 10 (PP10), then proteins were precipitated at pH 5.5 and subsequently dried. Yield of recovered protein powder was approximately 1.5 times higher for PP2 than for PP10. Compared with the control (230 g kg-1 ), ash content was reduced in PP2 (54 g kg-1 ) and PP10 (23 g kg-1 ) samples. PP2 contained predominantly large-molecular-weight proteins, while small-molecular-weight proteins were distributed in PP10. With regard to functional properties, at pH 7 and 8, solubility of PP10 was significantly higher than that of PP2. At pH 7.5, PP10 exhibited significantly higher emulsifying activity (1482 m2 g-1 ) than PP2 (858 m2 g-1 ) and the control (958 m2 g-1 ). PP2 showed statistically higher gelation activity and had higher L* value than PP10 and the control. CONCLUSION: The results indicate that recovered green crab proteins have functional properties potentially useful for formulated foods, and that these functional properties can be modified by the solubilization pH during the recovery process. © 2018 Society of Chemical Industry.
Assuntos
Braquiúros/química , Proteínas Musculares/isolamento & purificação , Animais , Precipitação Química , Manipulação de Alimentos , Ingredientes de Alimentos/análise , Alimento Funcional/análise , Concentração de Íons de Hidrogênio , Peso Molecular , Proteínas Musculares/química , SolubilidadeRESUMO
This study reports for the first time qualitative and quantitative differences in carbonylated proteins shed into blood as a function of increasing levels of OS. Carbonylated proteins in freshly drawn blood from pairs of diabetic and lean rats were derivatized with biotin hydrazide, dialyzed, and enriched with avidin affinity chromatography. Proteins thus selected were used in several ways. Differences between control and diabetic subjects in relative concentration of proteins was achieved by differential labeling of tryptic digests with iTRAQ reagents followed by reversed phase chromatography (RPC) and tandem mass spectrometry (MS/MS). Identification and characterization of OS induced post-translational modification sites in contrast was achieved by fractionation of affinity selected proteins before proteolysis and RPC-MS/MS. Relative quantification of peptides bearing oxidative modifications was achieved for the first time by selective reaction monitoring (SRM). Approximately 1.7% of the proteins in Zucker diabetic rat plasma were selected by the avidin affinity column as compared to 0.98% in lean animal plasma. Among the 35 proteins identified and quantified, Apo AII, clusterin, hemopexin precursor, and potassium voltage-gated channel subfamily H member 7 showed the most dramatic changes in concentration. Seventeen carbonylation sites were identified and quantified, 11 of which changed more than 2-fold in oxidation state. Three types of carbonylation were identified at these sites: direct oxidative cleavage from reactive oxygen species, glycation and addition of advanced glycation end products, and addition of lipid peroxidation products. Direct oxidation was the dominant form of carbonylation observed while hemoglobin and murinoglobulin 1 homologue were the most heavily oxidized proteins.
Assuntos
Estresse Oxidativo/fisiologia , Animais , Biotina/análogos & derivados , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/química , Cromatografia de Fase Reversa , Bases de Dados de Proteínas , Diabetes Mellitus Experimental , Isoprostanos/urina , Oxirredução , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Carbonilação Proteica , Proteômica/métodos , Ratos , Ratos Zucker , Espectrometria de Massas em TandemRESUMO
There is potential that the pathological effects of oxidative stress (OS) associated diseases such as diabetes could be ameliorated with antioxidants, but this will require a clearer understanding of the pathway(s) by which proteins are damaged by OS. This study reports the development and use of methods that assess the efficacy of dietary antioxidant supplementation at a mechanistic level. Data reported here evaluate the impact of green tea supplementation on oxidative stress induced post-translational modifications (OSi-PTMs) in plasma proteins of Zucker diabetic fatty (ZDF) rats. The mechanism of antioxidant protection was examined through both the type and amount of OSi-PTMs using mass spectrometry based identification and quantification. Carbonylated proteins in freshly drawn blood samples were derivatized with biotin hydrazide. Proteins thus biotinylated were selected from plasma samples of green tea fed diabetic rats and control animals by avidin affinity chromatography, further fractionated by reversed phase chromatography (RPC); fractions from the RPC column were tryptic digested, and the tryptic digest was fractionated by RPC before being identified by tandem mass spectrometry (MS/MS). Relative quantification of peptides bearing carbonylation sites was achieved for the first time by RPC-MS/MS using selective reaction monitoring (SRM). Seventeen carbonylated peptides were detected and quantified in both control and treated plasma. The relative concentration of eight was dramatically different between control and green tea treated animals. Seven of the OSi-PTM bearing peptides had dropped dramatically in concentration with treatment while one increased, indicating differential regulation of carbonylation by antioxidants. Green tea antioxidants were found to reduce carbonylation of proteins by lipid peroxidation end products most, followed by advanced glycation end products to a slightly lower extent. Direct oxidation of proteins by reactive oxygen species (ROS) was protected the least by green tea.
Assuntos
Antioxidantes/farmacologia , Hemoglobinas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica , Espectrometria de Massas em Tandem , Animais , Antioxidantes/química , Biotina/análogos & derivados , Biotina/química , Peptídeos/análise , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Chá/química , Tripsina/metabolismoRESUMO
The predation and burrowing activity of invasive green crabs have had detrimental effects on important marine resources and habitats. Our objective is to develop bioactive hydrolysates by enzymatic proteolysis of underutilized green crab. Mechanically separated mince was hydrolyzed with Alcalase, Protamex, Flavourzyme, and Papain (1%) for 60 min. Subsequently, the hydrolysates were introduced to a simulated gastrointestinal digestion model. Selected samples were fractionated by ultrafiltration, and their anti-hyperglycemic effects including α-glucosidase, α-amylase, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities and glucagon-like 1 (GLP-1) secretory activity were evaluated. The Protamex treatment showed the highest α-glucosidase inhibitory activity (IC50 1.38 ± 0.19 mg/mL) compared to other enzyme treatments and the crab mince control, and its α-amylase inhibitory activity (IC50 11.02 ± 0.69 mg/mL) was lower than its α-glucosidase inhibitory activity. Its GLP-1 secretory activity was approximately four times higher than the positive control (10 mM glutamine). The <3 kD fraction contributed significantly to the anti-hyperglycemic activity of Protamex-derived hydrolysates, and this activity was stable after simulated digestion. Our results suggest that green crab hydrolysates obtained by Protamex treatment have the potential for type 2 diabetes management and could be incorporated in food products as a health-promoting ingredient.
RESUMO
The prevalence of diabetes reached 415 million worldwide in 2015. Polyphenol-rich food intake can benefit the glycemic control for individuals with diabetes. Fermentation may increase the bioavailability of polyphenols, which is generally low. Aronia (Aronia melanocarpa) is a polyphenol-rich berry that is native to North America. Proanthocyanins and anthocyanins are the major phenolic compounds in aronia. In this study, aronia kefir was made by fermenting cow's milk with added aronia juice. The changes in bioaccessible polyphenols of aronia kefir during digestion were assessed using an in vitro model. The impact of fermentation on the potential bioactivity of aronia polyphenols was evaluated. Results showed that the bioaccessible polyphenols in aronia kefir were elevated during digestion and the antioxidant capacity increased (IC50 of DPPH scavenging decreased from 24.07 mg kefir per mL to 8.97 mg kefir per mL). Digested aronia kefir had less bioaccessible anthocyanins (cyanidin-3-galactoside, cyanidin-3-arabinoside and cyanidin-3-xyloside) but similar antioxidant capacity and stronger inhibitory activity on α-glucosidase (IC50: 152.53 mg kefir per mL) compared to the non-fermented control (IC50: 484.93 mg kefir per mL). These results indicate that fermentation may produce metabolites with higher antioxidant capacity and better α-glucosidase inhibitory activity. Utilizing aronia kefir in the diet is a good strategy to help control blood glucose levels without abdominal side effects. Fermentation may be an effective method to increase the bioavailability of dietary polyphenols in food. More studies about the effects of fermentation on polyphenol-rich food are needed to optimize the potential health-promoting properties.
Assuntos
Inibidores de Glicosídeo Hidrolases/química , Fenóis/química , Photinia/química , alfa-Glucosidases/química , Animais , Antioxidantes/química , Bovinos , Fermentação , Frutas/química , Sucos de Frutas e Vegetais/análise , Kefir/análise , Leite/química , Fenóis/metabolismo , RatosRESUMO
Western-style high fat, high sugar diets are associated with non-alcoholic fatty liver disease (NAFLD) and increased liver cancer risk. Sulforaphane from broccoli may protect against these. Previously we initiated broccoli feeding to mice prior to exposure to the hepatocarcinogen diethylnitrosamine (DEN), and saw protection against NAFLD and liver cancer. Here we administered DEN to unweaned mice, initiating broccoli feeding two weeks later, to determine if broccoli protects against cancer progression. Specifically, male 15-day-old C57BL/6J mice were given DEN and placed on a Western or Western+10%Broccoli diet from the age of 4 weeks through 7 months. Dietary broccoli decreased hepatic triacylglycerols, NAFLD, liver damage and tumour necrosis factor by month 5 without changing body weight or relative liver weight, but did not slow carcinogenesis, seen in 100% of mice. We conclude that broccoli, a good source of sulforaphane, slows progression of hepatic lipidosis, but not tumourigenesis in this robust model.
RESUMO
The setpoint of viral RNA concentration (viral load [VL]) during chronic human immunodeficiency virus type 1 (HIV-1) infection reflects a virus-host equilibration closely related to CD8(+) cytotoxic T-lymphocyte (CTL) responses, which rely heavily on antigen presentation by the human major histocompatibility complex (MHC) (i.e., HLA) class I molecules. Differences in HIV-1 VL among 259 mostly clade C virus-infected individuals (137 females and 122 males) in the Zambia-UAB HIV Research Project (ZUHRP) were associated with several HLA class I alleles and haplotypes. In particular, general linear model analyses revealed lower log(10) VL among those with HLA allele B*57 (P = 0.002 [without correction]) previously implicated in favorable response and in those with HLA B*39 and A*30-Cw*03 (P = 0.002 to 0.016); the same analyses also demonstrated higher log(10) VL among individuals with A*02-Cw*16, A*23-B*14, and A*23-Cw*07 (P = 0.010 to 0.033). These HLA effects remained strong (P = 0.0002 to 0.075) after adjustment for age, gender, and duration of infection and persisted across three orders of VL categories (P = 0.001 to 0.084). In contrast, neither B*35 (n = 15) nor B*53 (n = 53) showed a clear disadvantage such as that reported elsewhere for these closely related alleles. Other HLA associations with unusually high (A*68, B*41, B*45, and Cw*16) or low (B*13, Cw*12, and Cw*18) VL were either unstable or reflected their tight linkage respecting disequilibria with other class I variants. The three consistently favorable HLA class I variants retained in multivariable models and in alternative analyses were present in 30.9% of subjects with the lowest (<10,000 copies per ml) and 3.1% of those with the highest (>100,000) VL. Clear differential distribution of HLA profiles according to level of viremia suggests important host genetic contribution to the pattern of immune control and escape during HIV-1 infection.