Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Enzyme Inhib Med Chem ; 35(1): 199-210, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31752556

RESUMO

Previous reports have validated the glycogen synthase kinase-3 (GSK-3) as a druggable target against the human protozoan parasite Leishmania. This prompted us to search for new leishmanicidal scaffolds as inhibitors of this enzyme from our in-house library of human GSK-3ß inhibitors, as well as from the Leishbox collection of leishmanicidal compounds developed by GlaxoSmithKline. As a result, new leishmanicidal inhibitors acting on Leishmania GSK-3 at micromolar concentrations were found. These inhibitors belong to six different chemical classes (thiadiazolidindione, halomethylketone, maleimide, benzoimidazole, N-phenylpyrimidine-2-amine and oxadiazole). In addition, the binding mode of the most active compounds into Leishmania GSK-3 was approached using computational tools. On the whole, we have uncovered new chemical scaffolds with an appealing prospective in the development and use of Leishmania GSK-3 inhibitors against this infectious protozoan.


Assuntos
Antiprotozoários/farmacologia , Descoberta de Drogas , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Leishmania/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Leishmania/citologia , Leishmania/enzimologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
2.
Artigo em Inglês | MEDLINE | ID: mdl-30297370

RESUMO

Drug repurposing affords the implementation of new treatments at a moderate cost and under a faster time-scale. Most of the clinical drugs against Leishmania share this origin. The antidepressant sertraline has been successfully assayed in a murine model of visceral leishmaniasis. Nevertheless, sertraline targets in Leishmania were poorly defined. In order to get a detailed insight into the leishmanicidal mechanism of sertraline on Leishmania infantum, unbiased multiplatform metabolomics and transmission electron microscopy were combined with a focused insight into the sertraline effects on the bioenergetics metabolism of the parasite. Sertraline induced respiration uncoupling, a significant decrease of intracellular ATP level, and oxidative stress in L. infantum promastigotes. Metabolomics evidenced an extended metabolic disarray caused by sertraline. This encompasses a remarkable variation of the levels of thiol-redox and polyamine biosynthetic intermediates, as well as a shortage of intracellular amino acids used as metabolic fuel by Leishmania Sertraline killed Leishmania through a multitarget mechanism of action, tackling essential metabolic pathways of the parasite. As such, sertraline is a valuable candidate for visceral leishmaniasis treatment under a drug repurposing strategy.


Assuntos
Antiprotozoários/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/metabolismo , Sertralina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Antidepressivos/farmacologia , Membrana Celular/efeitos dos fármacos , Reposicionamento de Medicamentos , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos
3.
Microbiol Res ; 262: 127086, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35700584

RESUMO

Fluorescent in situ hybridization (FISH) is a powerful tool that for more than 30 years has allowed to detect and quantify microorganisms as well as to study their spatial distribution in three-dimensional structured environments such as biofilms. Throughout these years, FISH has been improved in order to face some of its earlier limitations and to adapt to new research objectives. One of these improvements is related to the emergence of Nucleic Acid Mimics (NAMs), which are now employed as alternatives to the DNA and RNA probes that have been classically used in FISH. NAMs such as peptide and locked nucleic acids (PNA and LNA) have provided enhanced sensitivity and specificity to the FISH technique, as well as higher flexibility in terms of applications. In this review, we aim to cover the state-of-the-art of the different NAMs and explore their possible applications in FISH, providing a general overview of the technique advancement in the last decades.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , DNA , Hibridização in Situ Fluorescente/métodos , Ácidos Nucleicos/química , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/genética , Sensibilidade e Especificidade
4.
Biomedicines ; 10(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35625873

RESUMO

More than 1 billion people live in areas endemic for leishmaniasis, which is a relevant threat for public health worldwide. Due to the inadequate treatments, there is an urgent need to develop novel alternative drugs and to validate new targets to fight this disease. One appealing approach is the selective inhibition of protein kinases (PKs), enzymes involved in a wide range of processes along the life cycle of Leishmania. Several PKs, including glycogen synthase kinase 3 (GSK-3), have been validated as essential for this parasite by genetic or pharmacological methods. Recently, novel chemical scaffolds have been uncovered as Leishmania GSK-3 inhibitors with antiparasitic activity. In order to find new inhibitors of this enzyme, a virtual screening of our in-house chemical library was carried out on the structure of the Leishmania GSK-3. The virtual hits identified were experimentally assayed both for leishmanicidal activity and for in vitro inhibition of the enzyme. The best hits have a quinone scaffold. Their optimization through a medicinal chemistry approach led to a set of new compounds, provided a frame to establish biochemical and antiparasitic structure-activity relationships, and delivered molecules with an improved selectivity index. Altogether, this study paves the way for a systemic search of this class of inhibitors for further development as potential leishmanicidal drugs.

5.
Microorganisms ; 10(7)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889127

RESUMO

Legionella are opportunistic intracellular pathogens that are found throughout the environment. The Legionella contamination of water systems represents a serious social problem that can lead to severe diseases, which can manifest as both Pontiac fever and Legionnaires' disease (LD) infections. Fluorescence in situ hybridization using nucleic acid mimic probes (NAM-FISH) is a powerful and versatile technique for bacterial detection. By optimizing a peptide nucleic acid (PNA) sequence based on fluorescently selective binding to specific bacterial rRNA sequences, we established a new PNA-FISH method that has been successfully designed for the specific detection of the genus Legionella. The LEG22 PNA probe has shown great theoretical performance, presenting 99.9% specificity and 96.9% sensitivity. We also demonstrated that the PNA-FISH approach presents a good signal-to-noise ratio when applied in artificially contaminated water samples directly on filtration membranes or after cells elution. For water samples with higher turbidity (from cooling tower water systems), there is still the need for further method optimization in order to detect cellular contents and to overcome interferents' autofluorescence, which hinders probe signal visualization. Nevertheless, this work shows that the PNA-FISH approach could be a promising alternative for the rapid (3-4 h) and accurate detection of Legionella.

6.
Eur J Med Chem ; 182: 111568, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31419778

RESUMO

The human protozoan parasites Leishmania donovani and L. infantum are the causative agents of visceral leishmaniasis, as such, responsible for approximately 30,000 deaths annually. The available chemotherapeutic treatments are reduced to a few drugs whose effectiveness is limited by rising drug resistance/therapeutic failure, and noxious side-effects. Therefore, new therapeutic hits are needed. Compounds displaying the imidazo[2,1-a]isoindole skeleton have shown antichagasic, anti-HIV, antimalarial and anorectic activities. Here, we report the leishmanicidal activity of thirty one imidazo[2,1-a]isoindol-5-ol derivatives on promastigotes and intracellular amastigotes of L. donovani. Eight out of thirty one assayed compounds showed EC50 values ranging between 1 and 2 µM with selectivity indexes from 29 to 69 on infected THP-1 cells. Six compounds were selected for further elucidation of their leishmanicidal mechanism. In this regard, compound 29, the imidazoisoindolol with the highest activity on intracellular amastigotes, induced an early decrease of intracellular ATP levels, as well as mitochondrial depolarization, together with a partial plasma membrane destructuration, as assessed by transmission electron microscopy. Consequently, the inhibition of the energy metabolism of Leishmania plays an important role in the leishmanicidal mechanism of this compound, even when other additional targets cannot be ruled out. In all, the results supported the inclusion of the imidazoisoindole scaffold for the development of new leishmanicidal drugs.


Assuntos
Antiprotozoários/farmacologia , Imidazóis/farmacologia , Indóis/farmacologia , Leishmania donovani/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Imidazóis/síntese química , Imidazóis/química , Indóis/síntese química , Indóis/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
7.
Biochim Biophys Acta Gen Subj ; 1863(1): 96-104, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30292448

RESUMO

Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes , Ésteres/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae/efeitos dos fármacos , Aminas/farmacologia , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , N-Acetil-Muramil-L-Alanina Amidase/química , Permeabilidade/efeitos dos fármacos
8.
Eur J Med Chem ; 171: 38-53, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30904756

RESUMO

A new class of quinoline derivatives, bearing amino chains at C-4 and a styryl group at C-2, were tested on Leishmania donovani promastigotes and axenic and intracellular Leishmania pifanoi amastigotes. The introduction of the C-4 substituent improves the activity, which is due to interference with the mitochondrial activity of the parasite and its concomitant bioenergetic collapse by ATP exhaustion. Some compounds show a promising antileishmanial profile, with low micromolar or submicromolar activity on promastigote and amastigote forms and a good selectivity index.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Quinolinas/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Microscopia Confocal , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
9.
Front Microbiol ; 8: 2281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209293

RESUMO

The exopolysaccharide synthesized by Lactobacillus sakei MN1 is a dextran with antiviral and immunomodulatory properties of potential utility in aquaculture. In this work we have investigated the genetic basis of dextran production by this bacterium. Southern blot hybridization experiments demonstrated the plasmidic location of the dsrLS gene, which encodes the dextransucrase involved in dextran synthesis. DNA sequencing of the 11,126 kbp plasmid (pMN1) revealed that it belongs to a family which replicates by the theta mechanism, whose prototype is pUCL287. The plasmid comprises the origin of replication, repA, repB, and dsrLS genes, as well as seven open reading frames of uncharacterized function. Lb. sakei MN1 produces dextran when sucrose, but not glucose, is present in the growth medium. Therefore, plasmid copy number and stability, as well as dsrLS expression, were investigated in cultures grown in the presence of either sucrose or glucose. The results revealed that pMN1 is a stable low-copy-number plasmid in both conditions. Gene expression studies showed that dsrLS is constitutively expressed, irrespective of the carbon source present in the medium. Moreover, dsrLS is expressed from a monocistronic transcript as well as from a polycistronic repA-repB-orf1-dsrLS mRNA. To our knowledge, this is the first report of a plasmid-borne dextransucrase-encoding gene, as well as the first time that co-transcription of genes involved in plasmid maintenance and replication with a gene encoding an enzyme has been established.

10.
Carbohydr Polym ; 168: 22-31, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28457443

RESUMO

In this work we have investigated two dextran-producing lactic acid bacteria, Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10, isolated from fermented meat products. These bacteria synthesise dextran when sucrose, but not glucose, is present in the growth medium. The influence of dextran on bacterial aggregation, adhesion and biofilm formation was investigated in cultures challenged with sucrose or glucose. For Lb. sakei MN1, the synthesis of the dextran drastically impaired the three processes; in contrast it had no effect on Lc. mesenteroides RTF10. Therefore, the influence of dextran on probiotic properties of Lb. sakei MN1 was tested in vivo using gnotobiotic zebrafish models. The bacterium efficiently colonised the fish gut and inhibited the killing activity of Vibrio anguillarum NB10[pOT11]. Furthermore, under conditions of dextran synthesis, the adhesion of Lb. sakei MN1 to the epithelial cells decreased, without greatly affecting its anti V. anguillarum activity.


Assuntos
Aderência Bacteriana , Biofilmes , Dextranos/biossíntese , Latilactobacillus sakei/metabolismo , Animais , Células Epiteliais/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Produtos da Carne/microbiologia , Peixe-Zebra
11.
Carbohydr Polym ; 124: 292-301, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25839823

RESUMO

Viral infections in the aquaculture of salmonids can lead to high mortality and substantial economic losses. Thus, there is industrial interest in new molecules active against these viruses. Here we describe the production, purification, and the physicochemical and structural characterization of high molecular weight dextrans synthesized by Lactobacillus sakei MN1 and Leuconostoc mesenteroides RTF10. The purified dextrans, and commercial dextrans with molecular weights ranging from 10 to 2000kDa, were assayed in infected BF-2 and EPC fish cell-line monolayers for antiviral activity. Only T2000 and dextrans from MN1 and RTF10 had significant antiviral activity. This was similar to results obtained against infectious pancreatic necrosis virus. However the dextran from MN1 showed ten-fold higher activity against hematopoietic necrosis virus than T2000. In vivo assays using the MN1 polymer confirmed the in vitro results and revealed immunomodulatory activity. These results together with the high levels of dextran production (2gL(-1)) by Lb. sakei MN1, indicate the compounds potential utility as an antiviral agent in aquaculture.


Assuntos
Antivirais/farmacologia , Dextranos/farmacologia , Vírus da Necrose Pancreática Infecciosa/efeitos dos fármacos , Lactobacillus/química , Salmonidae/virologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Aquicultura , Linhagem Celular , Dextranos/química , Dextranos/isolamento & purificação , Fatores Imunológicos/química , Fatores Imunológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Vírus da Necrose Hematopoética Infecciosa/efeitos dos fármacos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Lactobacillus/metabolismo , Peso Molecular , Espectrofotometria Infravermelho , Truta/metabolismo
12.
Carbohydr Polym ; 93(1): 57-64, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23465901

RESUMO

Lactic acid bacteria (LAB) produce homopolysaccharides (HoPS) and heteropolysaccharides (HePS) with potential functional properties. In this work, we have performed a comparative analysis of production and purification trials of these biopolymers from bacterial culture supernatants. LAB strains belonging to four different genera, both natural as well as recombinant, were used as model systems for the production of HoPS and HePS. Two well characterized strains carrying the gft gene were used for ß-glucan production, Pediococcus parvulus 2.6 (P. parvulus 2.6) isolated from cider, and the recombinant strain Lactococcus lactis NZ9000[pGTF] (L. lactis NZ9000[pGTF]). In addition, another cider isolate, Lactobacillus suebicus CUPV225 (L. suebicus CUPV225), and Leuconostoc mesenteroides RTF10 (L. mesenteroides RTF10), isolated from meat products were included in the study. Chemical analysis of the EPS revealed that L. mesenteroides produces a dextran, L. suebicus a complex heteropolysaccharide, and the ß-glucan producing-strains the expected 2-substituted (1,3)-ß-glucan.


Assuntos
Genes Bacterianos , Lactococcus lactis/química , Leuconostoc/química , Polissacarídeos Bacterianos/isolamento & purificação , Técnicas Bacteriológicas , Meios de Cultura/química , Dextranos/biossíntese , Fermentação , Lactococcus lactis/genética , Lactococcus lactis/ultraestrutura , Leuconostoc/genética , Leuconostoc/ultraestrutura , Metilação , Microscopia Eletrônica de Transmissão , Pediococcus/química , Pediococcus/genética , Polissacarídeos Bacterianos/química , Espectrofotometria Infravermelho , beta-Glucanas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA