Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genet Mol Biol ; 33(3): 438-41, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21637410

RESUMO

Xenobiotics can trigger degranulation of eosinophils and mast cells. In this process, the cells release several substances leading to bronchial hyperactivity, the main feature of atopic asthma (AA). GSTM1 and GSTT1 genes encode enzymes involved in the inactivation of these compounds. Both genes are polymorphic in humans and have a null variant genotype in which both the gene and corresponding enzyme are absent. An increased risk for disease in individuals with the null GST genotypes is therefore, but this issue is controversial. The aim of this study was to investigate the influence of the GSTM1 and GSTT1 genotypes on the occurrence of AA, as well as on its clinical manifestations. Genomic DNA from 86 patients and 258 controls was analyzed by polymerase chain reaction. The frequency of the GSTM1 null genotype in patients was higher than that found in controls (60.5% versus 40.3%, p = 0.002). In individuals with the GSTM1 null genotype the risk of manifested AA was 2.3-fold higher (95%CI: 1.4-3.7) than for others. In contrast, similar frequencies of GSTT1 null and combined GSTM1 plus GSTT1 null genotypes were seen in both groups. No differences in genotype frequencies were perceived in patients stratified by age, gender, ethnic origin, and severity of the disease. These results suggest that the inherited absence of the GSTM1 metabolic pathway may alter the risk of AA in southeastern Brazilian children, although this must be confirmed by further studies with a larger cohort of patients and age-matched controls from the distinct regions of the country.

2.
Genet. mol. biol ; Genet. mol. biol;33(3): 438-441, 2010. tab
Artigo em Inglês | LILACS | ID: lil-555805

RESUMO

Xenobiotics can trigger degranulation of eosinophils and mast cells. In this process, the cells release several substances leading to bronchial hyperactivity, the main feature of atopic asthma (AA). GSTM1 and GSTT1 genes encode enzymes involved in the inactivation of these compounds. Both genes are polymorphic in humans and have a null variant genotype in which both the gene and corresponding enzyme are absent. An increased risk for disease in individuals with the null GST genotypes is therefore, but this issue is controversial. The aim of this study was to investigate the influence of the GSTM1 and GSTT1 genotypes on the occurrence of AA, as well as on its clinical manifestations. Genomic DNA from 86 patients and 258 controls was analyzed by polymerase chain reaction. The frequency of the GSTM1 null genotype in patients was higher than that found in controls (60.5 percent versus 40.3 percent, p = 0.002). In individuals with the GSTM1 null genotype the risk of manifested AA was 2.3-fold higher (95 percentCI: 1.4-3.7) than for others. In contrast, similar frequencies of GSTT1 null and combined GSTM1 plus GSTT1 null genotypes were seen in both groups. No differences in genotype frequencies were perceived in patients stratified by age, gender, ethnic origin, and severity of the disease. These results suggest that the inherited absence of the GSTM1 metabolic pathway may alter the risk of AA in southeastern Brazilian children, although this must be confirmed by further studies with a larger cohort of patients and age-matched controls from the distinct regions of the country.


Assuntos
Humanos , Masculino , Feminino , Criança , Adolescente , Asma/genética , Glutationa Transferase/genética , Polimorfismo Genético , Asma/epidemiologia , Brasil , Genótipo , Reação em Cadeia da Polimerase/métodos , Xenobióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA