RESUMO
PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.
Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Software , AlgoritmosRESUMO
BACKGROUND: Arterial spin labeling (ASL) derived cerebral blood flow (CBF) maps are prone to artifacts and noise that can degrade image quality. PURPOSE: To develop an automated and objective quality evaluation index (QEI) for ASL CBF maps. STUDY TYPE: Retrospective. POPULATION: Data from N = 221 adults, including patients with Alzheimer's disease (AD), Parkinson's disease, and traumatic brain injury. FIELD STRENGTH/SEQUENCE: Pulsed or pseudocontinuous ASL acquired at 3 T using non-background suppressed 2D gradient-echo echoplanar imaging or background suppressed 3D spiral spin-echo readouts. ASSESSMENT: The QEI was developed using N = 101 2D CBF maps rated as unacceptable, poor, average, or excellent by two neuroradiologists and validated by 1) leave-one-out cross validation, 2) assessing if CBF reproducibility in N = 53 cognitively normal adults correlates inversely with QEI, 3) if iterative discarding of low QEI data improves the Cohen's d effect size for CBF differences between preclinical AD (N = 27) and controls (N = 53), 4) comparing the QEI with manual ratings for N = 50 3D CBF maps, and 5) comparing the QEI with another automated quality metric. STATISTICAL TESTS: Inter-rater reliability and manual vs. automated QEI were quantified using Pearson's correlation. P < 0.05 was considered significant. RESULTS: The correlation between QEI and manual ratings (R = 0.83, CI: 0.76-0.88) was similar (P = 0.56) to inter-rater correlation (R = 0.81, CI: 0.73-0.87) for the 2D data. CBF reproducibility correlated negatively (R = -0.74, CI: -0.84 to -0.59) with QEI. The effect size comparing patients and controls improved (R = 0.72, CI: 0.59-0.82) as low QEI data was discarded iteratively. The correlation between QEI and manual ratings (R = 0.86, CI: 0.77-0.92) of 3D ASL was similar (P = 0.09) to inter-rater correlation (R = 0.78, CI: 0.64-0.87). The QEI correlated (R = 0.87, CI: 0.77-0.92) significantly better with manual ratings than did an existing approach (R = 0.54, CI: 0.30-0.72). DATA CONCLUSION: Automated QEI performed similarly to manual ratings and can provide scalable ASL quality control. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
RESUMO
PURPOSE: Tumor-associated macrophages (TAMs) are a key component of glioblastoma (GBM) microenvironment. Considering the differential role of different TAM phenotypes in iron metabolism with the M1 phenotype storing intracellular iron, and M2 phenotype releasing iron in the tumor microenvironment, we investigated MRI to quantify iron as an imaging biomarker for TAMs in GBM patients. METHODS: 21 adult patients with GBM underwent a 3D single echo gradient echo MRI sequence and quantitative susceptibility maps were generated. In 3 subjects, ex vivo imaging of surgical specimens was performed on a 9.4 Tesla MRI using 3D multi-echo GRE scans, and R2* (1/T2*) maps were generated. Each specimen was stained with hematoxylin and eosin, as well as CD68, CD86, CD206, and L-Ferritin. RESULTS: Significant positive correlation was observed between mean susceptibility for the tumor enhancing zone and the L-ferritin positivity percent (r = 0.56, p = 0.018) and the combination of tumor's enhancing zone and necrotic core and the L-Ferritin positivity percent (r = 0.72; p = 0.001). The mean susceptibility significantly correlated with positivity percent for CD68 (ρ = 0.52, p = 0.034) and CD86 (r = 0.7 p = 0.001), but not for CD206 (ρ = 0.09; p = 0.7). There was a positive correlation between mean R2* values and CD68 positive cell counts (r = 0.6, p = 0.016). Similarly, mean R2* values significantly correlated with CD86 (r = 0.54, p = 0.03) but not with CD206 (r = 0.15, p = 0.5). CONCLUSIONS: This study demonstrated the potential of MR quantitative susceptibility mapping as a non-invasive method for in vivo TAM quantification and phenotyping. Validation of these findings with large multicenter studies is needed.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética , Macrófagos Associados a Tumor , Adulto , Apoferritinas/metabolismo , Biomarcadores/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Ferro/metabolismo , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Polypharmacy in patients with cardiovascular diseases (CVDs) has been linked to several adverse outcomes. This study aimed to investigate the pattern of medication use and prevalence of polypharmacy among CVDs patients in Iran. METHOD: We used the baseline data of the Pars cohort study (PCS). The participants were asked to bring their medication bags; then, the medications were classified using the Anatomical Therapeutic Chemical classification. Polypharmacy was defined as using five or more medications concurrently. Poisson regression modeling was applied. The adjusted prevalence ratios (PR) and its 95% confidence interval (CI) were estimated. RESULTS: Totally, 9262 participants were enrolled in the PCS, of whom 961 had CVDs. The prevalence of polypharmacy in participants with and without CVDs was 38.9% and 7.1%, respectively. The highest prevalence of polypharmacy (51.5%) was among obese patients. Abnormal waist-hip ratio (PR: 2.79; 95% CI 1.57-4.94), high socioeconomic status (PR: 1.65; 95% CI 1.07-2.54), tobacco-smoking (PR: 1.35; 95% CI 1.00-1.81), patients with more than three co-morbidities (PR: 1.41; 95% CI 1.30-1.53), high physical activity (PR: 0.66; 95% CI 0.45-0.95), use of opiate ever (PR: 0.46; 95% CI 0.26-0.82), and healthy overweight subjects (PR: 0.22; 95% CI 0.12-0.39) were associated with polypharmacy. Cardiovascular drugs (76.1%), drugs acting on blood and blood-forming organs (50.4%), and alimentary tract and metabolism drugs (33.9%) were the most frequently used drugs. Agents acting on the renin-angiotensin system were the mostly used cardiovascular system drugs among men and those above 60 years old, while beta-blocking agents were mostly prevalent among cardiovascular system drugs in women with CVDs. CONCLUSION: Given the high prevalence of polypharmacy among CVDs patients, and subsequent complications, programs to educate both physicians and patients to prevent this issue is crucial.
Assuntos
Fármacos Cardiovasculares , Doenças Cardiovasculares , Alcaloides Opiáceos , Fármacos Cardiovasculares/efeitos adversos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Polimedicação , PrevalênciaRESUMO
Although it is widely accepted that better food habits do play important role in cancer prevention and treatment, how dietary agents mediate their effects remains poorly understood. More than thousand different polyphenols have been identified from dietary plants. In this review, we discuss the underlying mechanism by which dietary agents can modulate a variety of cell-signaling pathways linked to cancer, including transcription factors, nuclear factor κB (NF-κB), signal transducer and activator of transcription 3 (STAT3), activator protein-1 (AP-1), ß-catenin/Wnt, peroxisome proliferator activator receptor- gamma (PPAR-γ), Sonic Hedgehog, and nuclear factor erythroid 2 (Nrf2); growth factors receptors (EGFR, VEGFR, IGF1-R); protein Kinases (Ras/Raf, mTOR, PI3K, Bcr-abl and AMPK); and pro-inflammatory mediators (TNF-α, interleukins, COX-2, 5-LOX). In addition, modulation of proteasome and epigenetic changes by the dietary agents also play a major role in their ability to control cancer. Both in vitro and animal based studies support the role of dietary agents in cancer. The efficacy of dietary agents by clinical trials has also been reported. Importantly, natural agents are already in clinical trials against different kinds of cancer. Overall both in vitro and in vivo studies performed with dietary agents strongly support their role in cancer prevention. Thus, the famous quote "Let food be thy medicine and medicine be thy food" made by Hippocrates 25 centuries ago still holds good.
Assuntos
Dieta/tendências , Epigênese Genética , Proteínas de Neoplasias/genética , Neoplasias/dietoterapia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/prevenção & controle , Transdução de Sinais/efeitos dos fármacosRESUMO
While being the largest living terrestrial mammals, elephants are best known for their highly modified and uniquely elaborate craniofacial anatomy-most notably with respect to their often-massive tusks and intricately muscular, multifunctional proboscis (i.e., trunk). For over a century, studies of extinct proboscidean relatives of today's elephants have presented hypotheses regarding the evolutionary history of the crania and tusks of these animals and their bearing on the evolution of the proboscis. Herein, I explore major functional characteristics of the proboscidean head. I give a brief review of the anatomy of tusks and dentition, the feeding apparatus, and proboscis in extant elephants and explore their overall bearing in elephant feeding behavior as well as other aspects of their ecology. I also review the evolution of the proboscidean head, with a synthetic analysis of studies and further speculation exploring the interconnected evolutionary roles of tusk morphology and use, feeding anatomy and functional implications thereof, and proboscis anatomy and use in the ancestry of elephants. Notable emphasis is given to the evolutionary role of initial elongation of the mandibular symphysis in the development of the proboscis in many proboscideans. Subsequent secondary shortening of the symphysis and elevation of the temporal region and occiput allowed for a pendulous trunk and proal feeding in living elephants and other proboscidean groups with highly lophodont dentition.
RESUMO
In recent years, significant strides have been made in the field of neuro-oncology imaging, contributing to our understanding and management of brain tumors [...].
RESUMO
In this CCR Translations, we discuss pharmacologic ascorbate as a novel therapeutic for glioblastoma (GBM). Aberrant iron metabolism in GBM can be assessed noninvasively by MRI and exploited to potentially improve the efficacy of chemoradiotherapy. We contextualize the study's results and discuss the next steps to further develop this paradigm. See related article by Petronek et al., p. 283.
Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos/uso terapêutico , Quimiorradioterapia/métodos , Ferro , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismoRESUMO
Deep learning models have demonstrated great potential in medical imaging but are limited by the expensive, large volume of annotations required. To address this, we compared different active learning strategies by training models on subsets of the most informative images using real-world clinical datasets for brain tumor segmentation and proposing a framework that minimizes the data needed while maintaining performance. Then, 638 multi-institutional brain tumor magnetic resonance imaging scans were used to train three-dimensional U-net models and compare active learning strategies. Uncertainty estimation techniques including Bayesian estimation with dropout, bootstrapping, and margins sampling were compared to random query. Strategies to avoid annotating similar images were also considered. We determined the minimum data necessary to achieve performance equivalent to the model trained on the full dataset (α = 0.05). Bayesian approximation with dropout at training and testing showed results equivalent to that of the full data model (target) with around 30% of the training data needed by random query to achieve target performance (p = 0.018). Annotation redundancy restriction techniques can reduce the training data needed by random query to achieve target performance by 20%. We investigated various active learning strategies to minimize the annotation burden for three-dimensional brain tumor segmentation. Dropout uncertainty estimation achieved target performance with the least annotated data.
Assuntos
Teorema de Bayes , Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Incerteza , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodosRESUMO
BACKGROUND AND PURPOSE: Tumor segmentation is essential in surgical and treatment planning and response assessment and monitoring in pediatric brain tumors, the leading cause of cancer-related death among children. However, manual segmentation is time-consuming and has high interoperator variability, underscoring the need for more efficient methods. After training, we compared 2 deep-learning-based 3D segmentation models, DeepMedic and nnU-Net, with pediatric-specific multi-institutional brain tumor data based on multiparametric MR images. MATERIALS AND METHODS: Multiparametric preoperative MR imaging scans of 339 pediatric patients (n = 293 internal and n = 46 external cohorts) with a variety of tumor subtypes were preprocessed and manually segmented into 4 tumor subregions, ie, enhancing tumor, nonenhancing tumor, cystic components, and peritumoral edema. After training, performances of the 2 models on internal and external test sets were evaluated with reference to ground truth manual segmentations. Additionally, concordance was assessed by comparing the volume of the subregions as a percentage of the whole tumor between model predictions and ground truth segmentations using the Pearson or Spearman correlation coefficients and the Bland-Altman method. RESULTS: The mean Dice score for nnU-Net internal test set was 0.9 (SD, 0.07) (median, 0.94) for whole tumor; 0.77 (SD, 0.29) for enhancing tumor; 0.66 (SD, 0.32) for nonenhancing tumor; 0.71 (SD, 0.33) for cystic components, and 0.71 (SD, 0.40) for peritumoral edema, respectively. For DeepMedic, the mean Dice scores were 0.82 (SD, 0.16) for whole tumor; 0.66 (SD, 0.32) for enhancing tumor; 0.48 (SD, 0.27) for nonenhancing tumor; 0.48 (SD, 0.36) for cystic components, and 0.19 (SD, 0.33) for peritumoral edema, respectively. Dice scores were significantly higher for nnU-Net (P ≤ .01). Correlation coefficients for tumor subregion percentage volumes were higher (0.98 versus 0.91 for enhancing tumor, 0.97 versus 0.75 for nonenhancing tumor, 0.98 versus 0.80 for cystic components, 0.95 versus 0.33 for peritumoral edema in the internal test set). Bland-Altman plots were better for nnU-Net compared with DeepMedic. External validation of the trained nnU-Net model on the multi-institutional Brain Tumor Segmentation Challenge in Pediatrics (BraTS-PEDs) 2023 data set revealed high generalization capability in the segmentation of whole tumor, tumor core (a combination of enhancing tumor, nonenhancing tumor, and cystic components), and enhancing tumor with mean Dice scores of 0.87 (SD, 0.13) (median, 0.91), 0.83 (SD, 0.18) (median, 0.89), and 0.48 (SD, 0.38) (median, 0.58), respectively. CONCLUSIONS: The pediatric-specific data-trained nnU-Net model is superior to DeepMedic for whole tumor and subregion segmentation of pediatric brain tumors.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Criança , Masculino , Feminino , Adolescente , Pré-Escolar , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Lactente , Imageamento Tridimensional/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodosRESUMO
BACKGROUND AND PURPOSE: Response on imaging is widely used to evaluate treatment efficacy in clinical trials of pediatric gliomas. While conventional criteria rely on 2D measurements, volumetric analysis may provide a more comprehensive response assessment. There is sparse research on the role of volumetrics in pediatric gliomas. Our purpose was to compare 2D and volumetric analysis with the assessment of neuroradiologists using the Brain Tumor Reporting and Data System (BT-RADS) in BRAF V600E-mutant pediatric gliomas. MATERIALS AND METHODS: Manual volumetric segmentations of whole and solid tumors were compared with 2D measurements in 31 participants (292 follow-up studies) in the Pacific Pediatric Neuro-Oncology Consortium 002 trial (NCT01748149). Two neuroradiologists evaluated responses using BT-RADS. Receiver operating characteristic analysis compared classification performance of 2D and volumetrics for partial response. Agreement between volumetric and 2D mathematically modeled longitudinal trajectories for 25 participants was determined using the model-estimated time to best response. RESULTS: Of 31 participants, 20 had partial responses according to BT-RADS criteria. Receiver operating characteristic curves for the classification of partial responders at the time of first detection (median = 2 months) yielded an area under the curve of 0.84 (95% CI, 0.69-0.99) for 2D area, 0.91 (95% CI, 0.80-1.00) for whole-volume, and 0.92 (95% CI, 0.82-1.00) for solid volume change. There was no significant difference in the area under the curve between 2D and solid (P = .34) or whole volume (P = .39). There was no significant correlation in model-estimated time to best response (ρ = 0.39, P >.05) between 2D and whole-volume trajectories. Eight of the 25 participants had a difference of ≥90 days in transition from partial response to stable disease between their 2D and whole-volume modeled trajectories. CONCLUSIONS: Although there was no overall difference between volumetrics and 2D in classifying partial response assessment using BT-RADS, further prospective studies will be critical to elucidate how the observed differences in tumor 2D and volumetric trajectories affect clinical decision-making and outcomes in some individuals.
Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Proteínas Proto-Oncogênicas B-raf , Resultado do TratamentoRESUMO
Pediatric glioma recurrence can cause morbidity and mortality; however, recurrence pattern and severity are heterogeneous and challenging to predict with established clinical and genomic markers. Resultingly, almost all children undergo frequent, long-term, magnetic resonance (MR) brain surveillance regardless of individual recurrence risk. Deep learning analysis of longitudinal MR may be an effective approach for improving individualized recurrence prediction in gliomas and other cancers but has thus far been infeasible with current frameworks. Here, we propose a self-supervised, deep learning approach to longitudinal medical imaging analysis, temporal learning, that models the spatiotemporal information from a patient's current and prior brain MRs to predict future recurrence. We apply temporal learning to pediatric glioma surveillance imaging for 715 patients (3,994 scans) from four distinct clinical settings. We find that longitudinal imaging analysis with temporal learning improves recurrence prediction performance by up to 41% compared to traditional approaches, with improvements in performance in both low- and high-grade glioma. We find that recurrence prediction accuracy increases incrementally with the number of historical scans available per patient. Temporal deep learning may enable point-of-care decision-support for pediatric brain tumors and be adaptable more broadly to patients with other cancers and chronic diseases undergoing surveillance imaging.
RESUMO
Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (n = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (n = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; P = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. Keywords: Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning Supplemental material is available for this article. © RSNA, 2024.
Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Criança , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Adolescente , Pré-Escolar , Estudos Retrospectivos , Feminino , Lactente , Adulto Jovem , Glioma/diagnóstico por imagem , Glioma/patologia , Interpretação de Imagem Assistida por Computador/métodosRESUMO
Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Masculino , Feminino , Neoplasias Encefálicas/diagnóstico por imagem , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Glioma/diagnóstico , Aprendizado de MáquinaRESUMO
Background: Although response in pediatric low-grade glioma (pLGG) includes volumetric assessment, more simplified 2D-based methods are often used in clinical trials. The study's purpose was to compare volumetric to 2D methods. Methods: An expert neuroradiologist performed solid and whole tumor (including cyst and edema) volumetric measurements on MR images using a PACS-based manual segmentation tool in 43 pLGG participants (213 total follow-up images) from the Pacific Pediatric Neuro-Oncology Consortium (PNOC-001) trial. Classification based on changes in volumetric and 2D measurements of solid tumor were compared to neuroradiologist visual response assessment using the Brain Tumor Reporting and Data System (BT-RADS) criteria for a subset of 65 images using receiver operating characteristic (ROC) analysis. Longitudinal modeling of solid tumor volume was used to predict BT-RADS classification in 54 of the 65 images. Results: There was a significant difference in ROC area under the curve between 3D solid tumor volume and 2D area (0.96 vs 0.78, P = .005) and between 3D solid and 3D whole volume (0.96 vs 0.84, P = .006) when classifying BT-RADS progressive disease (PD). Thresholds of 15-25% increase in 3D solid tumor volume had an 80% sensitivity in classifying BT-RADS PD included in their 95% confidence intervals. The longitudinal model of solid volume response had a sensitivity of 82% and a positive predictive value of 67% for detecting BT-RADS PD. Conclusions: Volumetric analysis of solid tumor was significantly better than 2D measurements in classifying tumor progression as determined by BT-RADS criteria and will enable more comprehensive clinical management.
RESUMO
BACKGROUND: Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning of MRI tumor features could improve postoperative pLGG risk stratification. METHODS: We used pre-trained deep learning (DL) tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from two institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained three DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with 1) clinical features, 2) DL-MRI features, and 3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. RESULTS: Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, p<0.0001). CONCLUSIONS: DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.
RESUMO
MR imaging is central to the assessment of tumor burden and changes over time in neuro-oncology. Several response assessment guidelines have been set forth by the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working groups in different tumor histologies; however, the visual delineation of tumor components using MRIs is not always straightforward, and complexities not currently addressed by these criteria can introduce inter- and intra-observer variability in manual assessments. Differentiation of non-enhancing tumors from peritumoral edema, mild enhancement from absence of enhancement, and various cystic components can be challenging; particularly given a lack of sufficient and uniform imaging protocols in clinical practice. Automated tumor segmentation with artificial intelligence (AI) may be able to provide more objective delineations, but rely on accurate and consistent training data created manually (ground truth). Herein, this paper reviews existing challenges and potential solutions to identifying and defining subregions of pediatric brain tumors (PBTs) that are not explicitly addressed by current guidelines. The goal is to assert the importance of defining and adopting criteria for addressing these challenges, as it will be critical to achieving standardized tumor measurements and reproducible response assessment in PBTs, ultimately leading to more precise outcome metrics and accurate comparisons among clinical studies.
Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico , Criança , Imageamento por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodosRESUMO
Recurrent glioblastoma (rGBM) remains a major unmet medical need, with a median overall survival of less than 1 year. Here we report the first six patients with rGBM treated in a phase 1 trial of intrathecally delivered bivalent chimeric antigen receptor (CAR) T cells targeting epidermal growth factor receptor (EGFR) and interleukin-13 receptor alpha 2 (IL13Rα2). The study's primary endpoints were safety and determination of the maximum tolerated dose. Secondary endpoints reported in this interim analysis include the frequency of manufacturing failures and objective radiographic response (ORR) according to modified Response Assessment in Neuro-Oncology criteria. All six patients had progressive, multifocal disease at the time of treatment. In both dose level 1 (1 ×107 cells; n = 3) and dose level 2 (2.5 × 107 cells; n = 3), administration of CART-EGFR-IL13Rα2 cells was associated with early-onset neurotoxicity, most consistent with immune effector cell-associated neurotoxicity syndrome (ICANS), and managed with high-dose dexamethasone and anakinra (anti-IL1R). One patient in dose level 2 experienced a dose-limiting toxicity (grade 3 anorexia, generalized muscle weakness and fatigue). Reductions in enhancement and tumor size at early magnetic resonance imaging timepoints were observed in all six patients; however, none met criteria for ORR. In exploratory endpoint analyses, substantial CAR T cell abundance and cytokine release in the cerebrospinal fluid were detected in all six patients. Taken together, these first-in-human data demonstrate the preliminary safety and bioactivity of CART-EGFR-IL13Rα2 cells in rGBM. An encouraging early efficacy signal was also detected and requires confirmation with additional patients and longer follow-up time. ClinicalTrials.gov identifier: NCT05168423 .
Assuntos
Receptores ErbB , Glioblastoma , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Humanos , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Pessoa de Meia-Idade , Masculino , Receptores de Antígenos Quiméricos/imunologia , Feminino , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Adulto , Idoso , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Injeções Espinhais , Dose Máxima TolerávelRESUMO
PURPOSE: Sinonasal malignancies (SNMs) adversely impact patients' quality of life (QOL) and are frequently identified at an advanced stage. Because these tumors are rare, there are few studies that examine the specific QOL areas that are impacted. This knowledge would help improve the care of these patients. METHODS: In this prospective, multi-institutional study, 273 patients with SNMs who underwent definitive treatment with curative intent were evaluated. We used the University of Washington Quality of Life (UWQOL) instrument over 5 years from diagnosis to identify demographic, treatment, and disease-related factors that influence each of the 12 UWQOL subdomains from baseline to 5 -years post-treatment. RESULTS: Multivariate models found endoscopic resection predicted improved pain (vs. nonsurgical treatment CI 2.4, 19.4, p = 0.01) and appearance versus open (CI 27.0, 35.0, p < 0.001) or combined (CI 10.4, 17.1, p < 0.001). Pterygopalatine fossa involvement predicted worse swallow (CI -10.8, -2.4, p = 0.01) and pain (CI -17.0, -4.0, p < 0.001). Neck dissection predicted worse swallow (CI -14.8, -2.8, p < 0.001), taste (CI -31.7, -1.5, p = 0.02), and salivary symptoms (CI -28.4, -8.6, p < 0.001). Maxillary involvement predicted worse chewing (CI 9.8, 33.2; p < 0.001) and speech (CI -21.8, -5.4, p < 0.001) relative to other sites. Advanced T stage predicted worse anxiety (CI -13.0, -2.0, p = 0.03). CONCLUSIONS: Surgical approach, management of cervical disease, tumor extent, and site of involvement impacted variable UWQOL symptom areas. Endoscopic resection predicted better pain, appearance, and chewing compared with open. These results may aid in counseling patients regarding potential QOL expectations in their SNM treatment and recovery course.
Assuntos
Neoplasias dos Seios Paranasais , Qualidade de Vida , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Neoplasias dos Seios Paranasais/cirurgia , Adulto , Resultado do Tratamento , Endoscopia , Idoso de 80 Anos ou mais , Inquéritos e QuestionáriosRESUMO
Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.