Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002445, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163325

RESUMO

Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.


Assuntos
Antagonistas da Serotonina , Serotonina , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Receptor 5-HT1B de Serotonina , Antagonistas da Serotonina/farmacologia , Macaca , Animais
2.
J Neurosci ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39424365

RESUMO

Area TE is required for normal learning of visual categories based on perceptual similarity. To evaluate whether category learning changes neural activity in area TE, we trained two monkeys (both male) implanted with multi-electrode arrays to categorize natural images of cats and dogs. Neural activity during a passive viewing task was compared pre- and post-training. After the category training, the accuracy of abstract category decoding improved. Single units became more category-selective, the proportion of single units with category-selectivity increased, and units sustained their category-specific responses for longer. Visual category learning thus appears to enhance category separability in area TE by driving changes in the stimulus selectivity of individual neurons and by recruiting more units to the active network.Significance statement Neurons in Area TE are known to respond selectively to a small number of visual stimuli. Here we demonstrate that the neural activity in area TE is modulated by category learning of natural images (cats and dogs), thus demonstrating that this region is capable of undergoing rapid plastic changes in adult primates.

3.
EMBO J ; 40(22): e107757, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34636430

RESUMO

Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fluorescent TMP analogs enabled PET and intravital microscopy, respectively, of neuronal ecDHFR expression in mice. This technique can be used to the visualize neuronal circuit activity elicited by chemogenetic manipulation in the mouse hippocampus. Notably, ecDHFR-PET allows mapping of neuronal projections in non-human primate brains, demonstrating the applicability of ecDHFR-based tracking technologies for network monitoring. Finally, we demonstrate the utility of TMP analogs for PET studies of turnover and self-assembly of proteins tagged with ecDHFR mutants. These results establish opportunities for a broad spectrum of previously unattainable PET analyses of mammalian brain circuits at the molecular level.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Tetra-Hidrofolato Desidrogenase/genética , Animais , Encéfalo/citologia , Callithrix , Radioisótopos de Carbono/química , Radioisótopos de Flúor/química , Genes Reporter , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Rede Nervosa/diagnóstico por imagem , Proteínas/análise , Proteínas/metabolismo , Compostos Radiofarmacêuticos/síntese química , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/análogos & derivados , Trimetoprima/química
4.
J Neurosci ; 43(39): 6619-6627, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37620158

RESUMO

Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system available for neuronal modulation in NHPs uses pharmacologically selective actuator modules (PSAMs), which are selectively activated by pharmacologically selective effector molecules (PSEMs). To facilitate the use of the PSAM/PSEM system, the selection and dosage of PSEMs should be validated and optimized for NHPs. To this end, we used a multimodal imaging approach. We virally expressed excitatory PSAM (PSAM4-5HT3) in the striatum and the primary motor cortex (M1) of two male macaque monkeys, and visualized its location through positron emission tomography (PET) with the reporter ligand [18F]ASEM. Chemogenetic excitability of neurons triggered by two PSEMs (uPSEM817 and uPSEM792) was evaluated using [18F]fluorodeoxyglucose-PET imaging, with uPSEM817 being more efficient than uPSEM792. Pharmacological magnetic resonance imaging (phMRI) showed that increased brain activity in the PSAM4-expressing region began ∼13 min after uPSEM817 administration and continued for at least 60 min. Our multimodal imaging data provide valuable information regarding the manipulation of neuronal activity using the PSAM/PSEM system in NHPs, facilitating future applications.SIGNIFICANCE STATEMENT Like other chemogenetic tools, the ion channel-based system called pharmacologically selective actuator module/pharmacologically selective effector molecule (PSAM/PSEM) allows remote manipulation of neuronal activity and behavior in living animals. Nevertheless, its application in nonhuman primates (NHPs) is still limited. Here, we used multitracer positron emission tomography (PET) imaging and pharmacological magnetic resonance imaging (phMRI) to visualize an excitatory chemogenetic ion channel (PSAM4-5HT3) and validate its chemometric function in macaque monkeys. Our results provide the optimal agonist, dose, and timing for chemogenetic neuronal manipulation, facilitating the use of the PSAM/PSEM system and expanding the flexibility and reliability of circuit manipulation in NHPs in a variety of situations.


Assuntos
Canais Iônicos , Primatas , Animais , Masculino , Reprodutibilidade dos Testes , Imagem Multimodal , Macaca
5.
PLoS Biol ; 19(7): e3001055, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34197448

RESUMO

It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific contribution of DA signaling at D1-like receptor (D1R) and D2-like receptor (D2R) to cost-benefit trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs) and positron emission tomography (PET) imaging, we assessed the relationship between the degree of D1R/D2R blockade and changes in benefit- and cost-based motivation for goal-directed behavior of macaque monkeys. We found that the degree of blockade of either D1R or D2R was associated with a reduction of the positive impact of reward amount and increasing delay discounting. Workload discounting was selectively increased by D2R antagonism. In addition, blocking both D1R and D2R had a synergistic effect on delay discounting but an antagonist effect on workload discounting. These results provide fundamental insight into the distinct mechanisms of DA action in the regulation of the benefit- and cost-based motivation, which have important implications for motivational alterations in both neurological and psychiatric disorders.


Assuntos
Análise Custo-Benefício , Dopamina/metabolismo , Macaca mulatta/fisiologia , Motivação , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D2/fisiologia , Animais , Desvalorização pelo Atraso , Antagonistas de Dopamina/farmacologia , Macaca fuscata , Masculino , Tomografia por Emissão de Pósitrons , Receptores de Dopamina D1/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Carga de Trabalho
6.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(8): 476-489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39401901

RESUMO

Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exclusively activated by designer drugs (DREADDs), to nonhuman primates. DREADDs offer a means of reversibly controlling neuronal activity within a specific cell type or neural pathway, effectively targeting multiple brain regions simultaneously. The combination of DREADDs with imaging techniques, such as positron emission tomography and magnetic resonance imaging, has significantly enhanced nonhuman primate research, facilitating the precise visualization and manipulation of specific brain circuits and enabling the detailed monitoring of changes in network activity, which can then be correlated with altered behavior. This review outlines these technological advances and considers their potential for enhancing our understanding of primate brain circuit function and developing novel therapeutic approaches for treating brain diseases.


Assuntos
Encéfalo , Primatas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos
7.
J Neurosci ; 42(12): 2552-2561, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35110390

RESUMO

The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently developed highly potent and selective DREADD actuator, displays a capacity to expand the utility of DREADDs for chronic manipulation without side effects in nonhuman primates, which has not yet been validated. Here we investigated the pharmacokinetics and behavioral effects of orally administered DCZ in female and male macaque monkeys. Pharmacokinetic analysis and PET occupancy examination demonstrated that oral administration of DCZ yielded slower and prolonged kinetics, and that its bioavailability was 10%-20% of that in the case of systemic injection. Oral DCZ (300-1000 µg/kg) induced significant working memory impairments for at least 4 h in monkeys with hM4Di expressed in the dorsolateral prefrontal cortex (Brodmann's area 46). Repeated daily oral doses of DCZ consistently caused similar impairments over two weeks without discernible desensitization. Our results indicate that orally delivered DCZ affords a less invasive strategy for chronic but reversible chemogenetic manipulation of neuronal activity in nonhuman primates, and this has potential for clinical application.SIGNIFICANCE STATEMENT The use of designer receptors exclusively activated by designer drugs (DREADDs) for chronic manipulation of neuronal activity for days to weeks may be feasible for investigating brain functions and behavior on a long time-scale, and thereby for developing therapeutics for brain disorders, such as epilepsy. Here we performed pharmacokinetics and in vivo occupancy study of orally administered deschloroclozapine to determine a dose range suitable for DREADDs studies. In monkeys expressing hM4Di in the prefrontal cortex, single and repeated daily doses significantly induced working-memory impairments for hours and over two weeks, respectively, without discernible desensitization. These results indicate that orally delivered deschloroclozapine produces long-term stable chemogenetic effects, and holds great promise for the translational use of DREADDs technology.


Assuntos
Clozapina , Drogas Desenhadas , Animais , Controle Comportamental , Clozapina/farmacologia , Drogas Desenhadas/farmacologia , Feminino , Macaca mulatta , Masculino , Neurônios
8.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35794012

RESUMO

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Assuntos
Núcleo Caudado , Motivação , Animais , Núcleo Caudado/fisiologia , Objetivos , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , Recompensa
9.
Bioorg Med Chem Lett ; 85: 129212, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871703

RESUMO

Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors without geometrical isomerization in 82%, 66%, and 57% radiochemical yields (RCYs). Subsequent hydrolysis of the 11C-labeled ester produced [11C]peretinoin in 13 ± 8% RCY (n = 3). After pharmaceutical formulation, the resulting [11C]benzyl ester and [11C]peretinoin had high radiochemical purity (>99% each) and molar activities of 144 and 118 ± 49 GBq µmol-1 at total synthesis times of 31 min and 40 ± 3 min, respectively. Rat brain PET imaging for the [11C]ester revealed a unique time-radioactivity curve, suggesting the participation of the acid [11C]peretinoin for the brain permeability. However, the curve of the [11C]peretinoin rose steadily after a shorter time lag to reach 1.4 standardized uptake value (SUV) at 60 min. These various phenomena between the ester and acid became more pronounced in the monkey brain (SUV of > 3.0 at 90 min). With the opportunity to identify high brain uptake of [11C]peretinoin, we discovered CNS activities of a drug candidate called peretinoin, such as the induction of a stem-cell to neuronal cell differentiation and the suppression of neuronal damages.


Assuntos
Antineoplásicos , Retinoides , Ratos , Animais , Metilação , Retinoides/farmacologia , Antineoplásicos/farmacologia , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia
10.
Eur J Nucl Med Mol Imaging ; 48(10): 3101-3112, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33674894

RESUMO

PURPOSE: Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [11C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. METHODS: [11C]MTP38 was radiosynthesized by 11C-cyanation of a bromo precursor with [11C]HCN. PET scans of rat and rhesus monkey brains and in vitro autoradiography of brain sections derived from these species were conducted with [11C]MTP38. In monkeys, dynamic PET data were analyzed with an arterial input function to calculate the total distribution volume (VT). The non-displaceable binding potential (BPND) in the striatum was also determined by a reference tissue model with cerebellar reference. Finally, striatal occupancy of PDE7 by an inhibitor was calculated in monkeys according to changes in BPND. RESULTS: [11C]MTP38 was synthesized with radiochemical purity ≥99.4% and molar activity of 38.6 ± 12.6 GBq/µmol. Autoradiography revealed high radioactivity in the striatum and its reduction by non-radiolabeled ligands, in contrast with unaltered autoradiographic signals in other regions. In vivo PET after radioligand injection to rats and monkeys demonstrated that radioactivity was rapidly distributed to the brain and intensely accumulated in the striatum relative to the cerebellum. Correspondingly, estimated VT values in the monkey striatum and cerebellum were 3.59 and 2.69 mL/cm3, respectively. The cerebellar VT value was unchanged by pretreatment with unlabeled MTP38. Striatal BPND was reduced in a dose-dependent manner after pretreatment with MTP-X, a PDE7 inhibitor. Relationships between PDE7 occupancy by MTP-X and plasma MTP-X concentration could be described by Hill's sigmoidal function. CONCLUSION: We have provided the first successful preclinical demonstration of in vivo PDE7 imaging with a specific PET radioligand. [11C]MTP38 is a feasible radioligand for evaluating PDE7 in the brain and is currently being applied to a first-in-human PET study.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7 , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono , Ligantes , Ratos , Distribuição Tecidual
11.
J Neurosci ; 39(10): 1793-1804, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30626695

RESUMO

Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), while two male macaque monkeys performed an instrumental lever release task in which a visual cue indicated the forthcoming reward size. We found that the activity of some neurons in VP and rmCD reflected the expected reward size transiently following the cue. Reward size coding appeared earlier and stronger in VP than in rmCD. We also found that the activity in these areas was modulated by the satiation level of monkeys, which also occurred more frequently in VP than in rmCD. The information regarding reward size and satiation level was independently signaled in the neuronal populations of these areas. The data thus highlighted the neuronal coding of key variables for goal-directed behavior in VP. Furthermore, pharmacological inactivation of VP induced more severe deficit of goal-directed behavior than inactivation of rmCD, which was indicated by abnormal error repetition and diminished satiation effect on the performance. These results suggest that VP encodes incentive value and internal drive and plays a pivotal role in the control of motivation to promote goal-directed behavior.SIGNIFICANCE STATEMENT The limbic part of the basal ganglia has been implicated in the motivational control of goal-directed action. Here, we investigated how the ventral pallidum (VP) and the rostromedial caudate (rmCD) encode incentive value and internal drive and control goal-directed behavior. Neuronal recording and subsequent pharmacological inactivation revealed that VP had stronger coding of reward size and satiation level than rmCD. Reward size and satiation level were independently encoded in the neuronal population of these areas. Furthermore, VP inactivation impaired goal-directed behavior more severely than rmCD inactivation. These results highlight the central role of VP in the motivational control of goal-directed action.


Assuntos
Prosencéfalo Basal/fisiologia , Objetivos , Motivação/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Recompensa , Animais , Núcleo Caudado/fisiologia , Macaca mulatta , Masculino , Resposta de Saciedade , Percepção Visual/fisiologia
12.
Chemistry ; 25(30): 7308-7314, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30741443

RESUMO

Deep-red to near-infrared (NIR) OLEDs, which yield emission peak wavelengths beyond λ=660 nm, are applicable as unique light sources in plant growth or health monitoring systems. Compared with other visible-spectrum OLEDs, however, research in the field of deep-red OLEDs is not as advanced. In this work, three new types of dibenzofuran-based host materials are developed as n-type exciplex host partners. Combining these with the deep-red iridium complex bis(2,3-diphenylquinoxaline)iridium(dipivaloylmethane) ([(DPQ)2 Ir(dpm)]) and N,N'-di(naphalene-1-yl)-N,N'-diphenylbenzidine (α-NPD) as a p-type exciplex host partner, a highly efficient deep-red OLED can be realized with a maximum external quantum efficiency (ηext,max ) of over 16 % with Comission Internationale de l'Éclairge (CIE) coordinates of (0.71, 0.28). In addition, the effect of the doping concentration and the p/n ratio of the exciplex host on the efficiency and the lifetime of the OLEDs are investigated. Consequently, the optimized device exhibits a ηext,max of over 15 % and a six-time longer lifetime operating at high brightness of 100 cd m-2 compared with other state-of-the-art deep-red OLEDs.

13.
Mov Disord ; 34(2): 200-209, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30161282

RESUMO

BACKGROUND: Parkinson's disease is caused by dopamine deficiency in the striatum, which is a result of loss of dopamine neurons from the substantia nigra pars compacta. There is a consensus that a subpopulation of nigral dopamine neurons that expresses the calcium-binding protein calbindin is selectively invulnerable to parkinsonian insults. The objective of the present study was to test the hypothesis that dopamine neuron degeneration might be prevented by viral vector-mediated gene delivery of calbindin into the dopamine neurons that do not normally contain it. METHODS: A calbindin-expressing adenoviral vector was injected into the striatum of macaque monkeys to be conveyed to cell bodies of nigral dopamine neurons through retrograde axonal transport, or the calbindin-expressing lentiviral vector was injected into the nigra directly because of its predominant uptake from cell bodies and dendrites. The animals in which calbindin was successfully recruited into nigral dopamine neurons were administered systemically with MPTP. RESULTS: In the monkeys that had received unilateral vector injections, parkinsonian motor deficits, such as muscular rigidity and akinesia/bradykinesia, appeared predominantly in the limbs corresponding to the non-calbindin-recruited hemisphere after MPTP administration. Data obtained from tyrosine hydroxylase immunostaining and PET imaging for the dopamine transporter revealed that the nigrostriatal dopamine system was preserved better on the calbindin-recruited side. Conversely, on the non-calbindin-recruited control side, many more dopamine neurons expressed α-synuclein. CONCLUSIONS: The present results indicate that calbindin recruitment into nigral dopamine neurons protects against the onset of parkinsonian insults, thus providing a novel approach to PD prevention. © 2018 International Parkinson and Movement Disorder Society.


Assuntos
Calbindinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Feminino , Intoxicação por MPTP/patologia , Macaca fascicularis , Masculino , Neostriado/metabolismo , Degeneração Neural/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/prevenção & controle , Doença de Parkinson Secundária , Substância Negra/patologia
14.
J Pharmacol Exp Ther ; 357(3): 495-508, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27029585

RESUMO

A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin 1B (V1B) receptor. TASP0434299 exhibited high binding affinities for human and rat V1B receptors with IC50 values of 0.526 and 0.641 nM, respectively, and potent antagonistic activity at the human V1B receptor with an IC50 value of 0.639 nM without apparent binding affinities for other molecules at 1 µM. [(3)H]TASP0434299 bound to membranes expressing the human V1B receptor as well as those prepared from the rat anterior pituitary in a saturable manner. The binding of [(3)H]TASP0434299 to the membranes was dose-dependently displaced by several ligands for the V1B receptor. In addition, the intravenous administration of [(3)H]TASP0434299 to rats produced a saturable radioactive accumulation in the anterior pituitary where the V1B receptor is enriched, and it was dose-dependently blocked by the oral administration of 2-[2-(3-chloro-4-fluorophenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]-N-isopropylacetamide hydrochloride, a V1B receptor antagonist, indicating that [(3)H]TASP0434299 can be used as an in vivo radiotracer to measure the occupancy of the V1B receptor. Finally, the intravenous administration of [(11)C]TASP0434299 provided positron emission tomographic images of the V1B receptor in the pituitary in an anesthetized monkey, and the signal was blocked by pretreatment with an excess of unlabeled TASP0434299. These results indicate that radiolabeled TASP0434299 is the first radioligand to be capable of quantifying the V1B receptor selectively in both in vitro and in vivo studies and will provide a clinical biomarker for determining the occupancy of the V1B receptor during drug development or for monitoring the levels of the V1B receptor in diseased conditions.


Assuntos
Piridinas/metabolismo , Pirimidinas/metabolismo , Pirimidinonas/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Ligação Competitiva , Transporte Biológico , Radioisótopos de Carbono , Células HEK293 , Humanos , Macaca mulatta , Masculino , Hipófise/metabolismo , Tomografia por Emissão de Pósitrons , Ligação Proteica , Traçadores Radioativos , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley
15.
Sci Rep ; 14(1): 19619, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179718

RESUMO

Temporal discounting, in which the recipient of a reward perceives the value of that reward to decrease with delay in its receipt, is associated with impulsivity and psychiatric disorders such as depression. Here, we investigate the role of the serotonin 5-HT4 receptor (5-HT4R) in modulating temporal discounting in the macaque dorsal caudate nucleus (dCDh), the neurons of which have been shown to represent temporally discounted value. We first mapped the 5-HT4R distribution in macaque brains using positron emission tomography (PET) imaging and confirmed dense expression of 5-HT4R in the dCDh. We then examined the effects of a specific 5-HT4R antagonist infused into the dCDh. Blockade of 5-HT4R significantly increased error rates in a goal-directed delayed reward task, indicating an increase in the rate of temporal discounting. This increase was specific to the 5-HT4R blockade because saline controls showed no such effect. The results demonstrate that 5-HT4Rs in the dCDh are involved in reward-evaluation processes, particularly in the context of delay discounting, and suggest that serotonergic transmission via 5-HT4R may be a key component in the neural mechanisms underlying impulsive decisions, potentially contributing to depressive symptoms.


Assuntos
Núcleo Caudado , Desvalorização pelo Atraso , Tomografia por Emissão de Pósitrons , Receptores 5-HT4 de Serotonina , Recompensa , Antagonistas do Receptor 5-HT4 de Serotonina , Animais , Núcleo Caudado/metabolismo , Núcleo Caudado/efeitos dos fármacos , Núcleo Caudado/diagnóstico por imagem , Desvalorização pelo Atraso/efeitos dos fármacos , Masculino , Receptores 5-HT4 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT4 de Serotonina/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Macaca , Comportamento Animal/efeitos dos fármacos , Macaca mulatta
16.
Ann Nucl Med ; 38(8): 666-672, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38814564

RESUMO

PURPOSE: Information about developed positron emission tomography (PET) tracers and obtained clinical PET images is publicly available in a database. However, findings regarding the kinetic parameters of PET tracers are yet to be summarized. Therefore, in this study, we created an open-access database of central nervous system (CNS) kinetic parameters in the healthy human brain for existing PET tracers (DOCK-PET). METHODS: Our database includes information on the kinetic parameters and compounds of existing CNS-PET tracers. The kinetic parameter dataset comprises the analysis methods, VT, BPND, K parameters, relevant literature, and study details. The list of PET tracers and kinetic parameter information was compiled through keyword-based searches of PubMed and the Molecular Imaging and Contrast Agent Database (MICAD). The kinetic parameters obtained, including VT, BPND, and K parameters, were reorganized based on the defined brain anatomical regions. All data were rigorously double-checked before being summarized in Microsoft Excel and JavaScript Object Notation (JSON) formats. RESULTS: Of the 247 PET tracers identified through searches using the PubMed and MICAD websites, the kinetic parameters of 120 PET tracers were available. Among the 120 PET tracers, compound structures with chemical and physical properties were obtained from the PubChem website or the ChemDraw software. Furthermore, the affinity information of the 104 PET tracers was gathered from PubChem or extensive literature surveys of the 120 PET tracers. CONCLUSIONS: We developed a comprehensive open-access database, DOCK-PET, that includes both kinetic parameters of healthy humans and compound information for existing CNS-PET tracers.


Assuntos
Encéfalo , Bases de Dados Factuais , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cinética , Traçadores Radioativos , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo
17.
Cell Rep Methods ; 4(10): 100881, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39437713

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced DREADD derivatives miniDq and miniDi, which inherit the basic receptor properties from the Gq-coupled excitatory receptor hM3Dq and the Gi-coupled inhibitory receptor hM4Di, respectively, while being approximately 30% smaller in size. Taking advantage of the compact size of the receptors, we generated an adeno-associated virus (AAV) vector carrying both miniDq and the other DREADD family receptor (κ-opioid receptor-based inhibitory DREADD [KORD]) within the maximum AAV capacity (4.7 kb), allowing us to modulate neuronal activity and animal behavior in both excitatory and inhibitory directions using a single viral vector. We confirmed that expressing miniDq, but not miniDi, allowed activation of striatum activity in the cynomolgus monkey (Macaca fascicularis). The compact DREADDs may thus widen the opportunity for multiplexed interrogation and/or intervention in neuronal regulation in mice and non-human primates.


Assuntos
Dependovirus , Drogas Desenhadas , Vetores Genéticos , Macaca fascicularis , Neurônios , Animais , Dependovirus/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Drogas Desenhadas/farmacologia , Drogas Desenhadas/química , Humanos , Comportamento Animal/efeitos dos fármacos , Camundongos , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/genética , Masculino , Células HEK293 , Clozapina/análogos & derivados , Clozapina/farmacologia
18.
Nat Commun ; 15(1): 5369, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987235

RESUMO

Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.


Assuntos
Neurônios , Lobo Temporal , Animais , Masculino , Lobo Temporal/fisiologia , Neurônios/fisiologia , Macaca mulatta , Memória/fisiologia , Imageamento por Ressonância Magnética , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Mapeamento Encefálico , Córtex Pré-Frontal/fisiologia
19.
Nat Commun ; 15(1): 6487, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198415

RESUMO

Primates must adapt to changing environments by optimizing their behavior to make beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities. We designed two behavioral tasks in which two male macaque monkeys updated the values of certain items, either by directly experiencing changes in stimulus-reward associations, or by inferring the value of unexperienced items based on the task's rules. Chemogenetic silencing of bilateral OFC combined with mathematical model-fitting analysis revealed that monkey OFC is involved in updating item value based on both experience and inference. In vivo imaging of chemogenetic receptors by positron emission tomography allowed us to map projections from the OFC to the rostromedial caudate nucleus (rmCD) and the medial part of the mediodorsal thalamus (MDm). Chemogenetic silencing of the OFC-rmCD pathway impaired experience-based value updating, while silencing the OFC-MDm pathway impaired inference-based value updating. Our results thus demonstrate dissociable contributions of distinct OFC projections to different behavioral strategies, and provide new insights into the neural basis of value-based adaptive decision-making in primates.


Assuntos
Córtex Pré-Frontal , Animais , Masculino , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Comportamento Animal/fisiologia , Adaptação Psicológica/fisiologia , Núcleo Caudado/fisiologia , Núcleo Caudado/diagnóstico por imagem , Recompensa , Tomografia por Emissão de Pósitrons , Macaca mulatta , Vias Neurais/fisiologia , Comportamento de Escolha/fisiologia , Tomada de Decisões/fisiologia , Tálamo/fisiologia , Tálamo/diagnóstico por imagem , Mapeamento Encefálico/métodos
20.
Neuron ; 112(15): 2540-2557.e8, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843838

RESUMO

Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.


Assuntos
Modelos Animais de Doenças , Doença por Corpos de Lewy , Doença de Parkinson , Tomografia por Emissão de Pósitrons , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/diagnóstico por imagem , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Callithrix , Masculino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Idoso , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA