Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 112(7): e35438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923755

RESUMO

Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 µm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.


Assuntos
Músculo Esquelético , Ratos Endogâmicos Lew , Animais , Masculino , Ratos , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Regeneração , Modelos Animais de Doenças , Terapia por Estimulação Elétrica , Contração Muscular , Doenças Musculares/patologia , Doenças Musculares/reabilitação
2.
Nutrients ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299543

RESUMO

Short bowel syndrome (SBS) is a condition that results from a reduction in the length of the intestine or its functional capacity. SBS patients can have significant side effects and complications, the etiology of which remains ill-defined. Thus, facilitating intestinal adaptation in SBS remains a major research focus. Emerging data supports the role of the gut microbiome in modulating disease progression. There has been ongoing debate on defining a "healthy" gut microbiome, which has led to many studies analyzing the bacterial composition and shifts that occur in gastrointestinal disease states such as SBS and the resulting systemic effects. In SBS, it has also been found that microbial shifts are highly variable and dependent on many factors, including the anatomical location of bowel resection, length, and structure of the remnant bowel, as well as associated small intestinal bacterial overgrowth (SIBO). Recent data also notes a bidirectional communication that occurs between enteric and central nervous systems called the gut-brain axis (GBA), which is regulated by the gut microbes. Ultimately, the role of the microbiome in disease states such as SBS have many clinical implications and warrant further investigation. The focus of this review is to characterize the role of the gut microbiota in short bowel syndrome and its impact on the GBA, as well as the therapeutic potential of altering the microbiome.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Curto , Humanos , Síndrome do Intestino Curto/complicações , Microbioma Gastrointestinal/fisiologia , Eixo Encéfalo-Intestino , Intestino Delgado/microbiologia , Bactérias , Disbiose/microbiologia
3.
JPEN J Parenter Enteral Nutr ; 46(6): 1384-1392, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35072265

RESUMO

BACKGROUND: Parenteral nutrition (PN) remains a critical therapeutic option in patients who cannot tolerate enteral feeding. However, although lifesaving, PN is associated with significant side effects, including liver injury, the etiology of which is multifactorial. Carbamazepine (CBZ), an antiepileptic medication, is known to modulate hepatic fibrosis and hepatocellular injury in a variety of liver diseases. We hypothesized that CBZ could prevent PN-associated liver disease (PNALD), which we tested by using our novel ambulatory PN piglet model. METHODS: Piglets were fitted with jugular catheters and infusion pumps for PN and randomized to enteral nutrition (n = 7), PN (n = 6), or PN with parenteral CBZ (n = 6) for 2 weeks. Serum and liver tissue were analyzed via light microscopy, quantification of serum liver injury markers, Ki67 and cytokeratin-7 indexing, and real-time quantitative polymerase chain reaction. RESULTS: PN-fed piglets in our model developed manifestations of PNALD-particularly, increased serum bilirubin, gamma-glutamyltransferase, liver cholestasis, and Ki67 expression compared with that of EN-fed animals (P < 0.03). CBZ therapy in PN-fed animals led to a significant reduction in these markers of injury (P < 0.05). Investigation into the mechanism of these therapeutic effects revealed increased expression of sterol regulatory element-binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor alpha (PPAR-α), and fatty acid binding protein (FABP) in PN-fed animals receiving CBZ (P < 0.03). Further investigation revealed increased LC3 expression and decreased lysosomal-associated membrane protein (LAMP1) expression with CBZ (P < 0.03). CONCLUSION: CBZ administration mitigates PNALD severity, suggesting a novel therapeutic strategy targeting PN-associated side effects, and may present a paradigm change to current treatment options.


Assuntos
Carbamazepina , Hepatopatias , Nutrição Parenteral , Animais , Carbamazepina/uso terapêutico , Antígeno Ki-67/metabolismo , Hepatopatias/etiologia , Hepatopatias/prevenção & controle , Nutrição Parenteral/efeitos adversos , Suínos
4.
Nutrients ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364922

RESUMO

Short bowel syndrome (SBS) is a particularly serious condition in which the small intestine does not absorb sufficient nutrients for biological needs, resulting in severe illness and potentially death if not treated. Given the important role of the gut in many signaling cascades throughout the body, SBS results in disruption of many pathways and imbalances in various hormones. Due to the inability to meet sufficient nutritional needs, an intravenous form of nutrition, total parental nutrition (TPN), is administered. However, TPN presents difficulties such as severe liver injury and altered signaling secondary to the continued lack of luminal contents. This manuscript aims to summarize relevant studies into the systemic effects of TPN on systems such as the gut-brain, gut-lung, and gut-liver axis, as well as present novel therapeutics currently under use or investigation as mitigation strategies for TPN induced injury.


Assuntos
Síndrome do Intestino Curto , Animais , Humanos , Síndrome do Intestino Curto/complicações , Síndrome do Intestino Curto/terapia , Síndrome do Intestino Curto/metabolismo , Modelos Animais de Doenças , Nutrição Parenteral Total , Intestino Delgado/metabolismo , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA