Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Biol Chem ; 295(17): 5701-5716, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32184356

RESUMO

Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein-cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin-γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens-epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone-client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone-client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin-client complexes could contribute to lens aging and presbyopia.


Assuntos
Envelhecimento , Cristalino/metabolismo , Presbiopia/metabolismo , Cadeia A de alfa-Cristalina/metabolismo , Adolescente , Adulto , Idoso , Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Humanos , Cristalino/química , Pessoa de Meia-Idade , Desnaturação Proteica , Adulto Jovem , Cadeia A de alfa-Cristalina/química , gama-Cristalinas/química , gama-Cristalinas/metabolismo
2.
Glycoconj J ; 38(3): 347-359, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33245448

RESUMO

Proteins in the eye lens have negligible turnover and therefore progressively accumulate chemical modifications during aging. Carbonyls and oxidative stresses, which are intricately linked to one another, predominantly drive such modifications. Oxidative stress leads to the loss of glutathione (GSH) and ascorbate degradation; this in turn leads to the formation of highly reactive dicarbonyl compounds that react with proteins to form advanced glycation end products (AGEs). The formation of AGEs leads to the crosslinking and aggregation of proteins contributing to lens aging and cataract formation. To inhibit AGE formation, we developed a disulfide compound linking GSH diester and mercaptoethylguanidine, and we named it carboxitin. Bovine lens organ cultured with carboxitin showed higher levels of GSH and mercaptoethylguanidine in the lens nucleus. Carboxitin inhibited erythrulose-mediated mouse lens protein crosslinking, AGE formation and the formation of 3-deoxythreosone, a major ascorbate-derived AGE precursor in the human lens. Carboxitin inhibited the glycation-mediated increase in stiffness in organ-cultured mouse lenses measured using compressive mechanical strain. Delivery of carboxitin into the lens increases GSH levels, traps dicarbonyl compounds and inhibits AGE formation. These properties of carboxitin could be exploited to develop a therapy against the formation of AGEs and the increase in stiffness that causes presbyopia in aging lenses.


Assuntos
Glutationa/análogos & derivados , Glutationa/síntese química , Cristalino/efeitos dos fármacos , Animais , Bovinos , Produtos Finais de Glicação Avançada , Glicosilação , Cristalino/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Tetroses/metabolismo , Células Tumorais Cultivadas
3.
Exp Eye Res ; 190: 107864, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678036

RESUMO

Acylated lysine residues represent major chemical modifications in proteins. We investigated the malonylation and propionylation of lysine residues (MalK, PropK) in the proteins of aging human lenses. Western blot results showed that the two modifications are present in human lens proteins. Liquid chromatography-mass spectrometry (LC-MS/MS) results showed 4-18 and 4-32 pmol/mg protein of MalK and PropK, respectively, in human lens proteins with no apparent changes related to aging. Mass spectrometry results revealed that MalK- and PropK-modified lysine residues are present in all major crystallins, other cytosolic proteins, and membrane and cytoskeletal proteins of the lens. Several mitochondrial and cytosolic proteins in cultured human lens epithelial cells showed MalK and PropK modifications. Sirtuin 3 (SIRT3) and sirtuin 5 (SIRT5) were present in human lens epithelial and fiber cells. Moreover, lens epithelial cell lysate deacylated propionylated and malonylated lysozyme. The absence of SIRT3 and SIRT5 led to higher PropK and MalK levels in mouse lenses. Together, these data suggest that MalK and PropK are widespread modifications in lens and SIRT3 and SIRT5 could regulate their levels in lens epithelial cells.


Assuntos
Cristalinas/metabolismo , Cristalino/metabolismo , Lisina/metabolismo , Malonatos/metabolismo , Propionatos/metabolismo , Sirtuína 3/metabolismo , Sirtuínas/metabolismo , Envelhecimento/fisiologia , Animais , Western Blotting , Cromatografia Líquida , Proteínas do Citoesqueleto/metabolismo , Citosol/metabolismo , Células Epiteliais/metabolismo , Humanos , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Mitocondriais/metabolismo , Técnicas de Cultura de Órgãos , Inclusão em Parafina , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 21(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151061

RESUMO

BACKGROUND: Glaucoma is an optic neuropathy and involves the progressive degeneration of retinal ganglion cells (RGCs), which leads to blindness in patients. We investigated the role of the neuroprotective kynurenic acid (KYNA) in RGC death against retinal ischemia/reperfusion (I/R) injury. METHODS: We injected KYNA intravenously or intravitreally to mice. We generated a knockout mouse strain of kynurenine 3-monooxygenase (KMO), an enzyme in the kynurenine pathway that produces neurotoxic 3-hydroxykynurenine. To test the effect of mild hyperglycemia on RGC protection, we used streptozotocin (STZ) induced diabetic mice. Retinal I/R injury was induced by increasing intraocular pressure for 60 min followed by reperfusion and RGC numbers were counted in the retinal flat mounts. RESULTS: Intravenous or intravitreal administration of KYNA protected RGCs against I/R injury. The I/R injury caused a greater loss of RGCs in wild type than in KMO knockout mice. KMO knockout mice had mildly higher levels of fasting blood glucose than wild type mice. Diabetic mice showed significantly lower loss of RGCs when compared with non-diabetic mice subjected to I/R injury. CONCLUSION: Together, our study suggests that the absence of KMO protects RGCs against I/R injury, through mechanisms that likely involve higher levels of KYNA and glucose.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Glaucoma/prevenção & controle , Ácido Cinurênico/farmacologia , Quinurenina 3-Mono-Oxigenase/fisiologia , Traumatismo por Reperfusão/complicações , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glaucoma/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
5.
Biochemistry ; 58(9): 1260-1274, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758948

RESUMO

Acylation of lysine residues is a common post-translational modification of cellular proteins. Here, we show that lysine succinylation, a type of acylation, occurs in human lens proteins. All of the major crystallins exhibited Nε-succinyllysine (SuccK) residues. Quantification of SuccK in human lens proteins (from donors between the ages of 20 and 73 years) by LC-MS/MS showed a range between 1.2 and 14.3 pmol/mg lens protein. The total SuccK levels were slightly reduced in aged lenses (age > 60 years) relative to young lenses (age < 30 years). Immunohistochemical analyses revealed that SuccK was present in epithelium and fiber cells. Western blotting and immunoprecipitation experiments revealed that SuccK is particularly prominent in αB-crystallin, and succinylation in vitro revealed that αB-crystallin is more prone to succinylation than αA-crystallin. Mass spectrometric analyses showed succinylation at K72, K90, K92, K166, K175, and potentially K174 in human lens αB-crystallin. We detected succinylation at K72, K82, K90, K92, K103, K121, K150, K166, K175, and potentially K174 by mass spectrometry in mildly succinylated αB-crystallin. Mild succinylation improved the chaperone activity of αB-crystallin along with minor perturbation in tertiary and quaternary structure of the protein. These observations imply that succinylation is beneficial to αB-crystallin by improving its chaperone activity with only mild conformational alterations.


Assuntos
Cristalino/metabolismo , Lisina/análise , Lisina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Adulto , Fatores Etários , Idoso , Cromatografia Líquida , Dicroísmo Circular , Cristalinas/metabolismo , Mutação com Ganho de Função , Humanos , Cristalino/química , Pessoa de Meia-Idade , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformação Proteica , Succinatos/metabolismo , Espectrometria de Massas em Tandem , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/genética
6.
Exp Eye Res ; 182: 1-9, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30849386

RESUMO

Acetylation of lysine residues occurs in lens proteins. Previous studies have shown an improvement in the chaperone activity of αA-crystallin upon acetylation. Sirtuins are NAD+-dependent enzymes that can deacylate proteins. The roles of sirtuins in regulating the acetylation of lens proteins and their impacts on the function of α-crystallin are not known. Here, we detected sirtuin activity in mouse lenses, and SIRT3 and SIRT5 were present primarily in the mitochondria of cultured primary mouse lens epithelial cells. Western blotting showed higher levels of protein acetylation in the lenses of SIRT3 KO and SIRT5 KO mice than in lenses of WT mice. Mass spectrometry analyses revealed a greater number of acetylated lysine residues in α-crystallin isolated from the SIRT3 and SIRT5 KO lenses than from WT lenses. α-Crystallin isolated from SIRT3 and SIRT5 KO lenses displayed a higher surface hydrophobicity and higher chaperone activity than the protein isolated from WT lenses. Thus, SIRTs regulate the acetylation levels of crystallins in mouse lenses, and acetylation in lenses enhances the chaperone activity of α-crystallin.


Assuntos
Catarata/genética , Regulação da Expressão Gênica , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Sirtuína 3/genética , Sirtuínas/genética , alfa-Cristalinas/genética , Acetilação , Animais , Western Blotting , Catarata/metabolismo , Modelos Animais de Doenças , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA/genética , Sirtuína 3/biossíntese , Sirtuínas/biossíntese , alfa-Cristalinas/metabolismo
7.
J Cell Biochem ; 119(8): 6814-6827, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29693273

RESUMO

Human lens epithelial cells (HLE) undergo mesenchymal transition and become fibrotic during posterior capsule opacification (PCO), which is a frequent complication after cataract surgery. TGF-ß2 has been implicated in this fibrosis. Previous studies have focused on the role of hypoxia-inducible factor-1α (HIF-1α) in fibrotic diseases, but the role of HIF-1α in the TGF-ß2-mediated fibrosis in HLE is not known. TGF-ß2 treatment (10 ng/mL, 48 h) increased the HIF-1α levels along with the EMT markers in cultured human lens epithelial cells (FHL124 cells). The increase in HIF-1α corresponded to an increase in VEGF-A in the culture medium. However, exogenous addition of VEGF-A (up to 10 ng/mL) did not alter the EMT marker levels in HLE. Addition of a prolyl hydroxylase inhibitor, dimethyloxalylglycine (DMOG, up to 10 µM), enhanced the levels of HIF-1α, and secreted VEGF-A but did not alter the EMT marker levels. However, treatment of cells with a HIF-1α translational inhibitor, KC7F2, significantly reduced the TGF-ß2-mediated EMT response. This was accompanied by a reduction in the ERK phosphorylation and nuclear translocation of Snail and Slug. Together, these data suggest that HIF-1α is important for the TGF-ß2-mediated EMT of human lens epithelial cells.


Assuntos
Opacificação da Cápsula/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Proteínas do Olho/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Sistema de Sinalização das MAP Quinases , Fator de Crescimento Transformador beta2/metabolismo , Opacificação da Cápsula/genética , Opacificação da Cápsula/patologia , Linhagem Celular , Células Epiteliais/patologia , Proteínas do Olho/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cristalino , Fator de Crescimento Transformador beta2/genética
8.
Biochim Biophys Acta ; 1860(1 Pt B): 252-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25840354

RESUMO

BACKGROUND: The findings that α-crystallins are multi-functional proteins with diverse biological functions have generated considerable interest in understanding their role in health and disease. Recent studies have shown that chaperone peptides of α-crystallin could be delivered into cultured cells and in experimental animals with beneficial effects against protein aggregation, oxidation, inflammation and apoptosis. SCOPE OF REVIEW: In this review, we will summarize the latest developments on the therapeutic potential of α-crystallins and their functional peptides. MAJOR CONCLUSIONS: α-Crystallins and their functional peptides have shown significant favorable effects against several diseases. Their targeted delivery to tissues would be of great therapeutic benefit. However, α-crystallins can also function as disease-causing proteins. These seemingly contradictory functions must be carefully considered prior to their therapeutic use. GENERAL SIGNIFICANCE: αA and αB-Crystallin are members of the small heat shock protein family. These proteins exhibit molecular chaperone and anti-apoptotic activities. The core crystallin domain within these proteins is largely responsible for these prosperities. Recent studies have identified peptides within the crystallin domain of both α- and αB-crystallins with remarkable chaperone and anti-apoptotic activities. Administration of α-crystallin or their functional peptides has shown substantial inhibition of pathologies in several diseases. However, α-crystallins have been shown to promote disease-causing pathways. These two sides of the proteins are discussed in this review. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Encefalopatias/tratamento farmacológico , Oftalmopatias/tratamento farmacológico , Peptídeos/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , alfa-Cristalinas/química , Animais , Antioxidantes/uso terapêutico , Oftalmopatias/patologia , Chaperonas Moleculares/uso terapêutico , Peptídeos/química
9.
Biochem J ; 473(10): 1455-69, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987815

RESUMO

Transforming growth factor (TGF)-ß2-mediated pathways play a major role in the epithelial to mesenchymal transition (EMT) of lens epithelial cells (LECs) during secondary cataract formation, which is also known as posterior capsule opacification (PCO). Although αB-crystallin is a major protein in LEC, its role in the EMT remains unknown. In a human LEC line (FHL124), TGF-ß2 treatment resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was associated with nuclear localization of αB-crystallin, phosphorylated Smad2 (pSmad2) (S245/250/255), pSmad3 (S423/425), Smad4 and Snail and the binding of αB-crystallin to these transcription factors, all of which were reduced by the down-regulation of αB-crystallin. Expression of the functionally defective R120G mutant of αB-crystallin reduced TGF-ß2-induced EMT in LECs of αB-crystallin knockout (KO) mice. Treatment of bovine lens epithelial explants and mouse LEC with TGF-ß2 resulted in changes in the EMT-associated proteins at the mRNA and protein levels. This was accompanied by increase in phosphorylation of p44/42 mitogen-activated protein kinases (MAPK) (T202/Y204), p38 MAPK (T180/Y182), protein kinase B (Akt) (S473) and Smad2 when compared with untreated cells. These changes were significantly reduced in αB-crystallin depleted or knocked out LEC. The removal of the fibre cell mass from the lens of wild-type (WT) mice resulted in the up-regulation of EMT-associated genes in the capsule-adherent epithelial cells, which was reduced in the αB-crystallin KO mice. Together, our data show that αB-crystallin plays a central role in the TGF-ß2-induced EMT of LEC. αB-Crystallin could be targeted to prevent PCO and pathological fibrosis in other tissues.


Assuntos
Cristalinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/citologia , Fator de Crescimento Transformador beta2/farmacologia , Animais , Bovinos , Linhagem Celular , Cristalinas/genética , Transição Epitelial-Mesenquimal/genética , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo
10.
Biochem J ; 465(1): 115-25, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25332102

RESUMO

Previous studies have identified peptides in the 'crystallin-domain' of the small heat-shock protein (sHSP) α-crystallin with chaperone and anti-apoptotic activities. We found that peptides in heat-shock protein Hsp20 (G71HFSVLLDVKHFSPEEIAVK91) and Hsp27 (D93RWRVSLDVNHFAPDELTVK113) with sequence homology to α-crystallin also have robust chaperone and anti-apoptotic activities. Both peptides inhibited hyperthermic and chemically induced aggregation of client proteins. The scrambled peptides of Hsp20 and Hsp27 showed no such effects. The chaperone activities of the peptides were better than those from αA- and αB-crystallin. HeLa cells took up the FITC-conjugated Hsp20 peptide and, when the cells were thermally stressed, the peptide was translocated from the cytoplasm to the nucleus. The two peptides inhibited apoptosis in HeLa cells by blocking cytochrome c release from the mitochondria and caspase-3 activation. We found that scrambling the last four amino acids in the two peptides (KAIV in Hsp20 and KTLV in Hsp27) made them unable to enter cells and ineffective against stress-induced apoptosis. Intraperitoneal injection of the peptides prevented sodium-selenite-induced cataract formation in rats by inhibiting protein aggregation and oxidative stress. Our study has identified peptides from Hsp20 and Hsp27 that may have therapeutic benefit in diseases where protein aggregation and apoptosis are contributing factors.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP20/química , Proteínas de Choque Térmico HSP27/química , Chaperonas Moleculares/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Catarata/tratamento farmacológico , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Feminino , Proteínas de Choque Térmico HSP20/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Células HeLa , Proteínas de Choque Térmico , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Cristalino/efeitos dos fármacos , Cristalino/metabolismo , Masculino , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Peptídeos/administração & dosagem , Agregados Proteicos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley , Ácido Selenioso , Estresse Fisiológico/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Cristalinas/metabolismo
11.
Biochim Biophys Acta ; 1842(2): 164-74, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24252613

RESUMO

The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells.


Assuntos
Apoptose/efeitos dos fármacos , Citocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Proteínas de Choque Térmico HSP27/metabolismo , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/farmacologia , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mediadores da Inflamação/farmacologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Chaperonas Moleculares , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Peroxinitroso/metabolismo , Ácido Peroxinitroso/farmacologia , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triptofano/análogos & derivados , Triptofano/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
12.
J Biol Chem ; 288(18): 13022-35, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23508955

RESUMO

α-Crystallin is a member of the small heat-shock protein (sHSP) family and consists of two subunits, αA and αB. Both αA- and αB-crystallin act as chaperones and anti-apoptotic proteins. Previous studies have identified the peptide (70)KFVIFLDVKHFSPEDLTVK(88) in αA-crystallin and the peptide (73)DRFSVNLDVKHFSPEELKVK(92) in αB-crystallin as mini-chaperones. In the human lens, lysine 70 (Lys(70)) of αA and Lys(92) of αB (in the mini-chaperone sequences) are acetylated. In this study, we investigated the cellular effects of the unmodified and acetyl mini-chaperones. The αA- and αB-crystallin peptides inhibited stress-induced aggregation of four client proteins, and the αA-acetyl peptide was more effective than the native peptide against three of the client proteins. Both the acetyl and native crystallin peptides inhibited stress-induced apoptosis in two mammalian cell types, and this property was directly related to the inhibition of cytochrome c release from mitochondria and the activity of caspase-3 and -9. In organ-cultured rat lenses, the peptides inhibited calcimycin-induced epithelial cell apoptosis. Intraperitoneal injection of the peptides inhibited cataract development in selenite-treated rats, which was accompanied by inhibition of oxidative stress, protein insolubilization, and caspase activity in the lens. These inhibitory effects were more pronounced for acetyl peptides than native peptides. A scrambled αA-crystallin peptide produced no such effects. The results suggest that the α-crystallin chaperone peptides could be used as therapeutic agents to treat cataracts and diseases in which protein aggregation and apoptosis are contributing factors.


Assuntos
Apoptose , Catarata/metabolismo , Células Epiteliais/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Chaperonas Moleculares/metabolismo , Cadeia A de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Adulto , Animais , Células CHO , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Catarata/genética , Catarata/patologia , Células Cultivadas , Cricetinae , Cricetulus , Citocromos c/genética , Citocromos c/metabolismo , Modelos Animais de Doenças , Células Epiteliais/patologia , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ratos , Ratos Sprague-Dawley , Cadeia A de alfa-Cristalina/química , Cadeia A de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/genética
13.
Biochim Biophys Acta ; 1832(1): 195-203, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22982407

RESUMO

N(ε)-acetylation occurs on select lysine residues in α-crystallin of the human lens and alters its chaperone function. In this study, we investigated the effect of N(ε)-acetylation on advanced glycation end product (AGE) formation and consequences of the combined N(ε)-acetylation and AGE formation on the function of α-crystallin. Immunoprecipitation experiments revealed that N(ε)-acetylation of lysine residues and AGE formation co-occurs in both αA- and αB-crystallin of the human lens. Prior acetylation of αA- and αB-crystallin with acetic anhydride (Ac(2)O) before glycation with methylglyoxal (MGO) resulted in significant inhibition of the synthesis of two AGEs, hydroimidazolone (HI) and argpyrimidine. Similarly, synthesis of ascorbate-derived AGEs, pentosidine and N(ε)-carboxymethyl lysine (CML), was inhibited in both proteins by prior acetylation. In all cases, inhibition of AGE synthesis was positively related to the degree of acetylation. While prior acetylation further increased the chaperone activity of MGO-glycated αA-crystallin, it inhibited the loss of chaperone activity by ascorbate-glycation in both proteins. BioPORTER-mediated transfer of αA- and αB-crystallin into CHO cells resulted in significant protection against hyperthermia-induced apoptosis. This effect was enhanced in acetylated and MGO-modified αA- and αB-crystallin. Caspase-3 activity was reduced in α-crystallin transferred cells. Glycation of acetylated proteins with either MGO or ascorbate produced no significant change in the anti-apoptotic function. Collectively, these data demonstrate that lysine acetylation and AGE formation can occur concurrently in α-crystallin of human lens, and that lysine acetylation improves anti-apoptotic function of α-crystallin and prevents ascorbate-mediated loss of chaperone function.


Assuntos
Apoptose , Cristalino/citologia , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Cadeia A de alfa-Cristalina/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Acetilação , Motivos de Aminoácidos , Glicosilação , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Cadeia A de alfa-Cristalina/química , Cadeia A de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/genética
14.
ACS Chem Biol ; 19(7): 1495-1505, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38904252

RESUMO

Lysine acetylation (AcK) is a prominent post-translational modification in eye lens crystallins. We have observed that AcK formation is preferred in some lysine residues over others in crystallins. In this study, we have investigated the role of thiols in such AcK formation. Upon incubation with acetyl-CoA (AcCoA), αA-Crystallin, which contains two cysteine residues, showed significantly higher levels of AcK than αB-Crystallin, which lacks cysteine residues. Incubation with thiol-rich γS-Crystallin resulted in higher AcK formation in αB-Crystallin from AcCoA. External free thiol (glutathione and N-acetyl cysteine) increased the AcK content in AcCoA-incubated αB-Crystallin. Reductive alkylation of cysteine residues significantly decreased (p < 0.001) the AcCoA-mediated AcK formation in αA-Crystallin. Introduction of cysteine residues within ∼5 Å of lysine residues (K92C, E99C, and V169C) in αB-Crystallin followed by incubation with AcCoA resulted in a 3.5-, 1.3- and 1.3-fold increase in the AcK levels when compared to wild-type αB-Crystallin, respectively. Together, these results suggested that AcK formation in α-Crystallin is promoted by the proximal cysteine residues and protein-free thiols through an S → N acetyl transfer mechanism.


Assuntos
Lisina , Compostos de Sulfidrila , Lisina/metabolismo , Lisina/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Acetilação , Cristalinas/metabolismo , Cristalinas/química , Cristalino/metabolismo , Processamento de Proteína Pós-Traducional , Humanos , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química
15.
Proteomics Clin Appl ; : e202400018, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38923810

RESUMO

PURPOSE: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of chronic kidney disease and end-stage renal disease. One potential mechanism underlying cellular dysfunction contributing to kidney disease is aberrant protein post-translational modifications. Lysine acetylation is associated with cellular metabolic flux and is thought to be altered in patients with diabetes and dysfunctional renal metabolism. EXPERIMENTAL DESIGN: A novel extraction and LC-MS/MS approach was adapted to quantify sites of lysine acetylation from formalin-fixed paraffin-embedded (FFPE) kidney tissue and from patients with DKD and non-diabetic donors (n = 5 and n = 7, respectively). RESULTS: Analysis of FFPE tissues identified 840 total proteins, with 225 of those significantly changing in patients with DKD. Acetylomic analysis quantified 289 acetylated peptides, with 69 of those significantly changing. Pathways impacted in DKD patients revealed numerous metabolic pathways, specifically mitochondrial function, oxidative phosphorylation, and sirtuin signaling. Differential protein acetylation in DKD patients impacted sirtuin signaling, valine, leucine, and isoleucine degradation, lactate metabolism, oxidative phosphorylation, and ketogenesis. CONCLUSIONS AND CLINICAL RELEVANCE: A quantitative acetylomics platform was developed for protein biomarker discovery in formalin-fixed and paraffin-embedded biopsies of kidney transplant patients suffering from DKD.

16.
Cell Death Discov ; 10(1): 305, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942762

RESUMO

This study assesses the neuroprotective potential of CPP-P1, a conjugate of an anti-apoptotic peptain-1 (P1) and a cell-penetrating peptide (CPP) in in vitro, in vivo, and ex vivo glaucoma models. Primary retinal ganglion cells (RGCs) were subjected to either neurotrophic factor (NF) deprivation for 48 h or endothelin-3 (ET-3) treatment for 24 h and received either CPP-P1 or vehicle. RGC survival was analyzed using a Live/Dead assay. Axotomized human retinal explants were treated with CPP-P1 or vehicle for seven days, stained with RGC marker RBPMS, and RGC survival was analyzed. Brown Norway (BN) rats with elevated intraocular pressure (IOP) received weekly intravitreal injections of CPP-P1 or vehicle for six weeks. RGC function was evaluated using a pattern electroretinogram (PERG). RGC and axonal damage were also assessed. RGCs from ocular hypertensive rats treated with CPP-P1 or vehicle for seven days were isolated for transcriptomic analysis. RGCs subjected to 48 h of NF deprivation were used for qPCR target confirmation. NF deprivation led to a significant loss of RGCs, which was markedly reduced by CPP-P1 treatment. CPP-P1 also decreased ET-3-mediated RGC death. In ex vivo human retinal explants, CPP-P1 decreased RGC loss. IOP elevation resulted in significant RGC loss in mid-peripheral and peripheral retinas compared to that in naive rats, which was significantly reduced by CPP-P1 treatment. PERG amplitude decline in IOP-elevated rats was mitigated by CPP-P1 treatment. Following IOP elevation in BN rats, the transcriptomic analysis showed over 6,000 differentially expressed genes in the CPP-P1 group compared to the vehicle-treated group. Upregulated pathways included CREB signaling and synaptogenesis. A significant increase in Creb1 mRNA and elevated phosphorylated Creb were observed in CPP-P1-treated RGCs. Our study showed that CPP-P1 is neuroprotective through CREB signaling enhancement in several settings that mimic glaucomatous conditions. The findings from this study are significant as they address the pressing need for the development of efficacious therapeutic strategies to maintain RGC viability and functionality associated with glaucoma.

17.
Biochemistry ; 52(45): 8126-38, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24128140

RESUMO

αB-Crystallin is a chaperone and an anti-apoptotic protein that is strongly expressed in many tissues, including the lens, retina, heart, and kidney. In the human lens, several lysine residues in αB-crystallin are acetylated. We have previously shown that such acetylation is predominant at lysine 92 (K92) and lysine 166 (K166). We have investigated the effect of lysine acetylation on the structure and functions of αB-crystallin by the specific introduction of an N(ε)-acetyllysine (AcK) mimic at K92. The introduction of AcK slightly altered the secondary and tertiary structures of the protein. The introduction of AcK also resulted in an increase in the molar mass and hydrodynamic radius of the protein, and the protein became structurally more open and more stable than the native protein. The acetyl protein acquired higher surface hydrophobicity and exhibited 25-55% higher chaperone activity than the native protein. The acetyl protein had more client protein binding per subunit of the protein and higher binding affinity relative to that of the native protein. The acetyl protein was at least 20% more effective in inhibiting chemically induced apoptosis than the native protein. Molecular modeling suggests that acetylation of K92 makes the "α-crystallin domain" more hydrophobic. Together, our results reveal that the acetylation of a single lysine residue in αB-crystallin makes the protein structurally more stable and improves its chaperone and anti-apoptotic activities. Our findings suggest that lysine acetylation of αB-crystallin is an important chemical modification for enhancing αB-crystallin's protective functions in the eye.


Assuntos
Cristalinas/química , Cristalinas/metabolismo , Lisina/química , Lisina/metabolismo , Acetilação , Western Blotting , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
18.
Biochim Biophys Acta ; 1822(2): 120-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22120592

RESUMO

α-Crystallin is a major protein in the human lens that is perceived to help to maintain the transparency of the lens through its chaperone function. In this study, we demonstrate that many lens proteins including αA-crystallin are acetylated in vivo. We found that K70 and K99 in αA-crystallin and, K92 and K166 in αB-crystallin are acetylated in the human lens. To determine the effect of acetylation on the chaperone function and structural changes, αA-crystallin was acetylated using acetic anhydride. The resulting protein showed strong immunoreactivity against a N(ε)-acetyllysine antibody, which was directly related to the degree of acetylation. When compared to the unmodified protein, the chaperone function of the in vitro acetylated αA-crystallin was higher against three of the four different client proteins tested. Because a lysine (residue 70; K70) in αA-crystallin is acetylated in vivo, we generated a protein with an acetylation mimic, replacing Lys70 with glutamine (K70Q). The K70Q mutant protein showed increased chaperone function against three client proteins compared to the Wt protein but decreased chaperone function against γ-crystallin. The acetylated protein displayed higher surface hydrophobicity and tryptophan fluorescence, had altered secondary and tertiary structures and displayed decreased thermodynamic stability. Together, our data suggest that acetylation of αA-crystallin occurs in the human lens and that it affects the chaperone function of the protein.


Assuntos
Cristalino/química , Cristalino/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Cadeia A de alfa-Cristalina/química , Cadeia A de alfa-Cristalina/metabolismo , Anidridos Acéticos/metabolismo , Acetilação , Cristalinas , Glutamina/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisina/metabolismo , Pessoa de Meia-Idade , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência/métodos , Relação Estrutura-Atividade , Termodinâmica , Triptofano/metabolismo , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/metabolismo
19.
Aging Cell ; 22(4): e13797, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823285

RESUMO

Aging proteins in the lens become increasingly aggregated and insoluble, contributing to presbyopia. In this study, we investigated the ability of aggrelyte-2 (N,S-diacetyl-L-cysteine methyl ester) to reverse the water insolubility of aged human lens proteins and to decrease stiffness in cultured human and mouse lenses. Water-insoluble proteins (WI) of aged human lenses (65-75 years) were incubated with aggrelyte-2 (500 µM) for 24 or 48 h. A control compound that lacked the S-acetyl group (aggrelyte-2C) was also tested. We observed 19%-30% solubility of WI upon treatment with aggrelyte-2. Aggrelyte-2C also increased protein solubility, but its effect was approximately 1.4-fold lower than that of aggrelyte-2. The protein thiol contents were 1.9- to 4.9-fold higher in the aggrelyte-2- and aggrelyte-2C-treated samples than in the untreated samples. The LC-MS/MS results showed Nε -acetyllysine (AcK) levels of 1.5 to 2.1 nmol/mg protein and 0.6 to 0.9 nmol/mg protein in the aggrelyte-2- and aggrelyte-2C-treated samples. Mouse (C57BL/6J) lenses (incubated for 24 h) and human lenses (incubated for 72 h) with 1.0 mM aggrelyte-2 showed significant decreases in stiffness with simultaneous increases in soluble proteins (human lenses) and protein-AcK levels, and such changes were not observed in aggrelyte-2C-treated lenses. Mass spectrometry of the solubilized protein revealed AcK in all crystallins, but more was observed in α-crystallins. These results suggest that aggrelyte-2 increases protein solubility and decreases lens stiffness through acetylation and disulfide reduction. Aggrelyte-2 might be useful in treating presbyopia in humans.


Assuntos
Cristalinas , Cristalino , Presbiopia , Humanos , Animais , Camundongos , Idoso , Lisina/metabolismo , Presbiopia/metabolismo , Solubilidade , Cromatografia Líquida , Acetilação , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Cristalino/metabolismo , Cristalinas/análise , Cristalinas/metabolismo , Água/análise , Água/metabolismo , Dissulfetos/análise , Dissulfetos/metabolismo
20.
Front Mol Biosci ; 9: 860375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480891

RESUMO

This review summarizes the latest findings on small heat shock proteins (sHsps) in three major retinal diseases: glaucoma, diabetic retinopathy, and age-related macular degeneration. A general description of the structure and major cellular functions of sHsps is provided in the introductory remarks. Their role in specific retinal diseases, highlighting their regulation, role in pathogenesis, and possible use as therapeutics, is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA