Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 370, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488944

RESUMO

A large percentage of native grassland ecosystems have been severely degraded as a result of urbanization and intensive commercial agriculture. Extensive nitrogen-based fertilization regimes are widely used to rehabilitate and boost productivity in these grasslands. As a result, modern management frameworks rely heavily on detailed and accurate information on vegetation condition to monitor the success of these interventions. However, in high-density environments, biomass signal saturation has hampered detailed monitoring of rangeland condition. This issue stems from traditional broad-band vegetation indices (such as NDVI) responding to high levels of photosynthetically active radiation (PAR) absorption by leaf chlorophyll, which affects leaf area index (LAI) sensitivity within densely vegetative regions. Whilst alternate hyperspectral solutions may alleviate the problem to a certain degree, they are often too costly and not readily available within developing regions. To this end, this study evaluated the use of high-resolution Worldview-3 imagery in combination with modified NDVI indices and image manipulation techniques in reducing the effects of biomass signal saturation within a complex tropical grassland. Using the random forest algorithm, several modified NDVI-type indices were developed from all potential dual-band combinations of the Worldview-3 image. Thereafter, linear contrast stretching and histogram equalization were implemented in conjunction with Singular Value Decomposition (SVD) to improve high-density biomass estimation. Results demonstrated that both contrast enhancement techniques, when combined with SVD, improved high-density biomass estimation. However, linear contrast stretching, SVD, and modified NDVI indices developed from the red (630-690 nm), green (510-580 nm), and near-infrared 1 (770-895 nm) bands were found to produce the best biomass predictive model (R2 = 0.71, RMSE = 0.40 kg/m2). The results generated from this research offer a means to alleviate the biomass saturation problem. This framework provides a platform to assist rangeland managers in regionally assessing changes in vegetation condition within high-density grasslands.


Assuntos
Ecossistema , Pradaria , Biomassa , Monitoramento Ambiental/métodos , Folhas de Planta
2.
Environ Monit Assess ; 195(8): 954, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37452968

RESUMO

The carbon (C) and nitrogen (N) ratio is a key indicator of nutrient utilization and limitations in rangelands. To understand the distribution of herbivores and grazing patterns, information on grass quality and quantity is important. In heterogeneous environments, remote sensing offers a timely, economical, and effective method for assessing foliar biochemical ratios at varying spatial and temporal scales. Hence, this study provides a synopsis of the advancement in remote sensing technology, limitations, and emerging opportunities in mapping the C:N ratio in rangelands. Specifically, the paper focuses on multispectral and hyperspectral sensors and investigates their properties, absorption features, empirical and physical methods, and algorithms in predicting the C:N ratio in grasslands. Literature shows that the determination of the C:N ratio in grasslands is not in line with developments in remote sensing technologies. Thus, the use of advanced and freely available sensors with improved spectral and spatial properties such as Sentinel 2 and Landsat 8/9 with sophisticated algorithms may provide new opportunities to estimate C:N ratio in grasslands at regional scales, especially in developing countries. Spectral bands in the near-infrared, shortwave infrared, red, and red edge were identified to predict the C:N ratio in plants. New indices developed from recent multispectral satellite imagery, for example, Sentinel 2 aided by cutting-edge algorithms, can improve the estimation of foliar biochemical ratios. Therefore, this study recommends that future research should adopt new satellite technologies with recent development in machine learning algorithms for improved mapping of the C:N ratio in grasslands.


Assuntos
Pradaria , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Monitoramento Ambiental/métodos , Imagens de Satélites , Poaceae
3.
Environ Monit Assess ; 193(12): 802, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34778906

RESUMO

The use of neural network (NN) models for remote sensing (RS) retrieval of landscape biophysical and biochemical properties has become popular in the last decade. Recently, the emergence of "big data" that can be generated from remotely sensed data and innovative machine learning (ML) approaches have provided a platform for novel analytical approaches. Specifically, the advent of deep learning (DL) frameworks developed from traditional neural networks (TNN) offer unprecedented opportunities to improve the accuracy of SOC retrievals from remotely sensed imagery. This review highlights the use of TNN models and their evolution into DL architectures in remote sensing of SOC estimation. The review also highlights the application of DL, with a specific focus on its development and adoption in remote sensing of SOC mapping. The review concludes by highlighting future opportunities for the use of DL frameworks for the retrieval of SOC from remotely sensed data.


Assuntos
Aprendizado Profundo , Solo , Carbono/análise , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto
4.
Geoderma Reg ; 37: e00817, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39015345

RESUMO

Soil organic carbon (SOC) stocks are critical for land management strategies and climate change mitigation. However, understanding SOC distribution in South Africa's arid and semi-arid regions remains a challenge due to data limitations, and the complex spatial and sub-surface variability in SOC stocks driven by desertification and land degradation. Thus, to support soil and land-use management practices as well as advance climate change mitigation efforts, there is an urgent need to provide more precise SOC stock estimates within South Africa's arid and semi-arid regions. Hence, this study adopted remote-sensing approaches to determine the spatial sub-surface distribution of SOC stocks and the influence of environmental co-variates at four soil depths (i.e., 0-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm). Using two regression-based algorithms, i.e., Extreme Gradient Boosting (XGBoost) and Random Forest (RF), the study found the former (RMSE values ranging from 7.12 t/ha to 29.55 t/ha) to be a superior predictor of SOC in comparison to the latter (RMSE values ranging from 7.36 t/ha to 31.10 t/ha). Nonetheless, both models achieved satisfactory accuracy (R2 ≥ 0.52) for regional-scale SOC predictions at the studied soil depths. Thereafter, using a variable importance analysis, the study demonstrated the influence of climatic variables like rainfall and temperature on SOC stocks at different depths. Furthermore, the study revealed significant spatial variability in SOC stocks, and an increase in SOC stocks with soil depth. Overall, these findings enhance the understanding of SOC dynamics in South Africa's arid and semi-arid landscapes and emphasizes the importance of considering site specific topo-climatic characteristics for sustainable land management and climate change mitigation. Furthermore, the study offers valuable insights into sub-surface SOC distribution, crucial for informing carbon sequestration strategies, guiding land management practices, and informing environmental policies within arid and semi-arid environments.

5.
Catena (Amst) ; 243: 108216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39021895

RESUMO

The preservation and augmentation of soil organic carbon (SOC) stocks is critical to designing climate change mitigation strategies and alleviating global warming. However, due to the susceptibility of SOC stocks to environmental and topo-climatic variability and changes, it is essential to obtain a comprehensive understanding of the state of current SOC stocks both spatially and vertically. Consequently, to effectively assess SOC storage and sequestration capacity, precise evaluations at multiple soil depths are required. Hence, this study implemented an advanced Deep Neural Network (DNN) model incorporating Sentinel-1 Synthetic Aperture Radar (SAR) data, topo-climatic features, and soil physical properties to predict SOC stocks at multiple depths (0-30cm, 30-60cm, 60-100cm, and 100-200cm) across diverse land-use categories in the KwaZulu-Natal province, South Africa. There was a general decline in the accuracy of the DNN model's prediction with increasing soil depth, with the root mean square error (RMSE) ranging from 8.34 t/h to 11.97 t/h for the four depths. These findings imply that the link between environmental covariates and SOC stocks weakens with soil depth. Additionally, distinct factors driving SOC stocks were discovered in both topsoil and deep-soil, with vegetation having the strongest effect in topsoil, and topo-climate factors and soil physical properties becoming more important as depth increases. This underscores the importance of incorporating depth-related soil properties in SOC modelling. Grasslands had the largest SOC stocks, while commercial forests have the highest SOC sequestration rates per unit area. This study offers valuable insights to policymakers and provides a basis for devising regional management strategies that can be used to effectively mitigate climate change.

6.
Sci Total Environ ; 865: 161150, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587704

RESUMO

The management of soil organic carbon (SOC) stocks remains at the forefront of greenhouse gas mitigation. However, unprecedented anthropogenic disturbances emanating from continued land-use change have significantly altered SOC distribution across global biomes leading to considerable carbon losses. Consequently, understanding the spatial distribution of SOC across different biomes, particularly at larger scales, is critical for climate change policy formulation and planning. Advancements in remote sensing, availability of big data, and deep learning architecture offer great potential in large-scale SOC mapping. In this regard, this study mapped SOC distribution across South Africa's major biomes using remotely sensed-topo-climatic data and Concrete Autoencoder-Deep neural networks (CAE-DNN). From the different deep neural frameworks tested, the CAE-DNN model (developed from 26 selected covariates) achieved the best accuracy with an RMSE value of 7.91 t/ha (about 20 % of the mean). Results further showed that SOC stock correlated with general biome coverage, as the Grassland and Savanna biomes contributed the most (32.38 % and 31.28 %) to the overall SOC pool in South Africa. However, despite their smaller footprint, Forests (44.12 t/h) and the Indian Ocean Coastal Belt (43.05 t/h) biomes demonstrated the highest SOC sequestration capacity. The restoration of degraded biomes is advocated for, in order to boost SOC storage; but a balance between carbon sequestration capacity, biodiversity health, and the adequate provision of ecosystem services must be maintained. To this end, these findings provide a guideline to facilitate sustainable SOC stock management within South Africa's major biomes and indeed other regions of the world.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA