Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(11): 115301, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798344

RESUMO

Repulsive Bose-Bose mixtures are known to either mix or phase separate into pure components. Here we predict a mixed-bubble regime in which bubbles of the mixed phase coexist with a pure phase of one of the components. This is a beyond-mean-field effect that occurs for unequal masses or unequal intraspecies coupling constants and is due to a competition between the mean-field term, quadratic in densities, and a nonquadratic beyond-mean-field correction. We find parameters of the mixed-bubble regime in all dimensions and discuss implications for current experiments.

2.
Phys Rev Lett ; 111(15): 150402, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160581

RESUMO

We demonstrate coherent one-color photoassociation of a Bose-Einstein condensate, which results in Rabi oscillations between atomic and molecular condensates. We attain atom-molecule Rabi frequencies that are comparable to decoherence rates by driving photoassociation of atoms in an ^{88}Sr condensate to a weakly bound level of the metastable 1S0+3P1 molecular potential, which has a long lifetime and a large Franck-Condon overlap integral with the ground scattering state. Transient shifts and broadenings of the excitation spectrum are clearly seen at short times, and they create an asymmetric excitation profile that only displays Rabi oscillations for blue detuning from resonance.

3.
Phys Rev Lett ; 105(20): 203001, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231225

RESUMO

We report on the direct conversion of laser-cooled 41K and 87Rb atoms into ultracold 41K87Rb molecules in the rovibrational ground state via photoassociation followed by stimulated Raman adiabatic passage. High-resolution spectroscopy based on the coherent transfer revealed the hyperfine structure of weakly bound molecules in an unexplored region. Our results show that a rovibrationally pure sample of ultracold ground-state molecules is achieved via the all-optical association of laser-cooled atoms, opening possibilities to coherently manipulate a wide variety of molecules.

4.
Science ; 324(5925): 360-3, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19372424

RESUMO

At ultracold temperatures, the Pauli exclusion principle suppresses collisions between identical fermions. This has motivated the development of atomic clocks with fermionic isotopes. However, by probing an optical clock transition with thousands of lattice-confined, ultracold fermionic strontium atoms, we observed density-dependent collisional frequency shifts. These collision effects were measured systematically and are supported by a theoretical description attributing them to inhomogeneities in the probe excitation process that render the atoms distinguishable. This work also yields insights for zeroing the clock density shift.

5.
Phys Rev Lett ; 96(20): 203201, 2006 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16803171

RESUMO

With ultracold 88Sr in a 1D magic wavelength optical lattice, we performed narrow-line photoassociation spectroscopy near the 1S0 - 3P1 intercombination transition. Nine least-bound vibrational molecular levels associated with the long-range 0u and 1u potential energy surfaces were measured and identified. A simple theoretical model accurately describes the level positions and treats the effects of the lattice confinement on the line shapes. The measured resonance strengths show that optical tuning of the ground state scattering length should be possible without significant atom loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA