RESUMO
BACKGROUND: The Cumberland Gap Region (CGR) of the United States is a natural corridor between the southeastern, northeastern, and midwestern regions of the country. CGR has also many species of ticks and mosquitos that serve as competent vectors for important animal and human pathogens. In this study, we tested dogs from six different animal shelters in the CGR for Rocky Mountain spotted fever (RMSF), anaplasmosis, Lyme disease, canine ehrlichiosis and canine heartworm disease. RESULTS: Sera from 157 shelter dogs were tested for antibodies to RMSF agent, Rickettsia rickettsii, using an indirect immunofluorescence assay. Sixty-six dogs (42.0%) were positive for either IgM or IgG, or both IgM and IgG antibodies to R. rickettsii. Moreover, the same set of sera (n = 157) plus an and additional sera (n = 75) from resident dogs at the same shelters were tested using the SNAP 4Dx Plus. Of 232 dogs tested, two (0.9%) were positive for antibodies to Anaplasma phagocytophilum/A. platys, nine (3.9%) were positive for antibodies to Borrelia burgdorferi, 23 (9.9%) for positive for antibodies to Ehrlichia canis/E. ewingii, and 13 (5.6%) were positive for Dirofilaria immitis antigen. Co-infection with two or more etiologic agents was detected in five animals. Three dogs had antibodies to both B. burgdorferi and E. canis/E. ewingii, and two dogs were positive for D. immitis antigen and antibodies to B. burgdorferi and E. canis/E. ewingii. CONCLUSIONS: Shelter dogs in the CGR are exposed to a number of important vector-borne pathogens. Further studies are required to ascertain the roles these animals play in maintenance and transmission of these pathogens.
Assuntos
Coinfecção/veterinária , Doenças do Cão/microbiologia , Doenças do Cão/parasitologia , Doenças Transmitidas por Vetores/veterinária , Anaplasma/imunologia , Anaplasma/isolamento & purificação , Anaplasmose/sangue , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Helmintos/sangue , Região dos Apalaches/epidemiologia , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/isolamento & purificação , Coinfecção/epidemiologia , Dirofilaria immitis/imunologia , Dirofilaria immitis/isolamento & purificação , Dirofilariose/sangue , Doenças do Cão/epidemiologia , Cães , Ehrlichia/imunologia , Ehrlichia/isolamento & purificação , Ehrlichiose/sangue , Ehrlichiose/veterinária , Feminino , Doença de Lyme/sangue , Doença de Lyme/veterinária , Masculino , Rickettsia rickettsii/imunologia , Rickettsia rickettsii/isolamento & purificação , Febre Maculosa das Montanhas Rochosas/sangue , Febre Maculosa das Montanhas Rochosas/veterinária , Estudos Soroepidemiológicos , Doenças Transmitidas por Vetores/sangueRESUMO
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry.
RESUMO
The objective of this blinded, cluster-randomized, complete block trial was to evaluate the impact of metaphylaxis on health, performance, antimicrobial resistance, and contextual antimicrobial use (AMU) in high-risk beef stocker calves. Calves (nâ =â 155) were randomly assigned to receive either saline or tulathromycin at the time of arrival processing. Deep nasopharyngeal swabs were collected from each calf at arrival and 14 d later. Calves were monitored for bovine respiratory disease (BRD) for 42 d. Body weights were obtained at arrival, days 14, 28, and 42. Contextual antimicrobial use (AMU) was calculated using dose and mass-based metrics. Calves given tulathromycin had a greater average daily gain (0.96â ±â 0.07 kg vs. 0.82â ±â 0.07 kg; Pâ =â 0.034) and lower prevalence of BRD than controls (17% vs. 40%; Pâ =â 0.008). Proportions of calves with BRD pathogens identified at arrival were similar between treatment groups [17%; Pâ =â 0.94]. Proportions of calves with BRD pathogens identified at day 14 were lower for calves receiving tulathromycin compared to controls (15% vs. 60%, Pâ <â 0.001). Overall, 81% of Pastuerella multocida isolates and 47% of Mannheimia haemolytica isolates were pansusceptible. When measured as regimens per head in, AMU in calves receiving tulathromycin was higher than calves receiving saline (Pâ =â 0.01). Under the conditions of this study, metaphylaxis had positive impacts on the health and performance of high-risk beef stocker calves, did not contribute to the selection of resistant bacterial isolates in the nasopharynx of treated cattle, and increased AMU.
In this study, we investigated the impact of metaphyactic antimicrobial administration on health, performance, and antimicrobial use in high-risk beef stocker calves. Our findings demonstrated that metaphylaxis improves performance and has positive effects on animal health and well-being but increases total antimicrobial use. Additionally, our study revealed that metaphylaxis alone does not contribute to the selection of antimicrobial-resistant pathogens in the upper airway of treated cattle.
Assuntos
Doenças dos Bovinos , Mannheimia haemolytica , Bovinos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/microbiologia , Projetos de PesquisaRESUMO
We performed a retrospective study of all case submissions for the rabies virus (RABV) direct fluorescent antibody test (DFAT) requested of the Tifton Veterinary Diagnostic and Investigational Laboratory (Tifton, GA, USA) between July 2010 and June 2021. Submitted were 792 samples from 23 animal species from 89 counties in Georgia, and 4 neighboring counties in Florida, 1 in South Carolina, and 1 in Alabama. In 13 (1.6%) cases, the DFAT result was inconclusive; 779 (98.4%) cases had a conclusive (positive or negative) test result. Of these 779 cases, 79 (10.1%) tested positive across 10 species. The remaining 700 (89.9%) cases were negative. The main reason for submission for RABV testing was human exposure to a potentially rabid animal in 414 (52.3%) cases. Among the 79 positive cases, 74 (93.7%) involved wildlife; raccoons (51 cases; 68.9%) were the primary host confirmed with RABV infection, followed by skunk and fox (8 cases each; 10.8%), bobcat (5 cases; 6.8%), and bats (2 cases; 2.7%). Only 5 domestic animals (6.3% of the positive cases) tested positive during our study period; one from each of the bovine, canine, caprine, equine, and feline species. Hence, the sylvatic cycle plays the predominant role in circulating RABV infection in our study area.
Assuntos
Animais Domésticos , Animais Selvagens , Raiva , Animais , Raiva/veterinária , Raiva/epidemiologia , Estudos Retrospectivos , Animais Selvagens/virologia , Animais Domésticos/virologia , Vírus da Raiva/isolamento & purificação , Técnica Direta de Fluorescência para Anticorpo/veterináriaRESUMO
This study evaluated the use of endemic enteric coronaviruses polymerase chain reaction (PCR)-negative testing results as an alternative approach to detect the emergence of animal health threats with similar clinical diseases presentation. This retrospective study, conducted in the United States, used PCR-negative testing results from porcine samples tested at six veterinary diagnostic laboratories. As a proof of concept, the database was first searched for transmissible gastroenteritis virus (TGEV) negative submissions between January 1st, 2010, through April 29th, 2013, when the first porcine epidemic diarrhea virus (PEDV) case was diagnosed. Secondly, TGEV- and PEDV-negative submissions were used to detect the porcine delta coronavirus (PDCoV) emergence in 2014. Lastly, encountered best detection algorithms were implemented to prospectively monitor the 2023 enteric coronavirus-negative submissions. Time series (weekly TGEV-negative counts) and Seasonal Autoregressive-Integrated Moving-Average (SARIMA) were used to control for outliers, trends, and seasonality. The SARIMA's fitted and residuals were then subjected to anomaly detection algorithms (EARS, EWMA, CUSUM, Farrington) to identify alarms, defined as weeks of higher TGEV-negativity than what was predicted by models preceding the PEDV emergence. The best-performing detection algorithms had the lowest false alarms (number of alarms detected during the baseline) and highest time to detect (number of weeks between the first alarm and PEDV emergence). The best-performing detection algorithms were CUSUM, EWMA, and Farrington flexible using SARIMA fitted values, having a lower false alarm rate and identified alarms 4 to 17 weeks before PEDV and PDCoV emergences. No alarms were identified in the 2023 enteric negative testing results. The negative-based monitoring system functioned in the case of PEDV propagating epidemic and in the presence of a concurrent propagating epidemic with the PDCoV emergence. It demonstrated its applicability as an additional tool for diagnostic data monitoring of emergent pathogens having similar clinical disease as the monitored endemic pathogens.
Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Vírus da Gastroenterite Transmissível/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Vírus da Diarreia Epidêmica Suína/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Doenças dos Suínos/virologia , Doenças dos Suínos/diagnóstico , Estudos Retrospectivos , Gastroenterite Suína Transmissível/diagnóstico , Gastroenterite Suína Transmissível/virologia , Gastroenterite Suína Transmissível/epidemiologia , Reação em Cadeia da Polimerase/métodos , Deltacoronavirus/genética , Deltacoronavirus/isolamento & purificação , Estados Unidos/epidemiologiaRESUMO
A 1-yr-old albino male corn snake (Elaphae guttata guttata), which was part of a large breeding stock, was presented to the University of Florida, College of Veterinary Medicine, Zoo and Exotic Animal Clinic with a history of anorexia for 2 wk and progressively declining body condition. The animal was euthanized due to a poor prognosis. Histopathology, electron microscopy, and polymerase chain reaction analysis on tissues revealed concurrent infection with adenovirus and Cryptosporidium. Primary infection with adenovirus could have caused immunodeficiency in the snake, thus predisposing it to secondary infection with Cryptosporidium. To the authors' knowledge, this is the first report of co-infection of adenovirus and Cryptosporidium in a Colubrid species of snake.
Assuntos
Infecções por Adenoviridae/veterinária , Criptosporidiose/veterinária , Serpentes , Infecções por Adenoviridae/complicações , Infecções por Adenoviridae/patologia , Animais , Animais de Zoológico , Coinfecção/veterinária , Criptosporidiose/complicações , Criptosporidiose/patologia , Intestinos/parasitologia , Intestinos/patologia , MasculinoRESUMO
Canine infectious respiratory disease complex (CIRDC) is caused by different viruses and bacteria. Viruses associated with CIRDC include canine adenovirus type 2 (CAV-2), canine distemper virus (CDV), canine influenza virus (CIV), canine herpesvirus type 1 (CHV-1), canine respiratory coronavirus (CRCoV), and canine parainfluenza virus (CPIV). Bacteria associated with CIRDC include Bordetella bronchiseptica, Streptococcus equi subspecies zooepidemicus (S. zooepidemicus), and Mycoplasma spp. The present study examined the prevalence of CIRDC pathogens in specimens received by a Veterinary Diagnostic Laboratory in Georgia, USA., from 2018 to 2022. Out of 459 cases, viral agents were detected in 34% of cases and bacterial agents were detected in 58% of cases. A single pathogen was detected in 31% of cases, while two or more pathogens were identified in 24% of cases. The percentages of viral agents identified were CAV-2 (4%), CDV (3%), CPIV (16%), CRCoV (7%), and CIV (2%). The percentages of bacterial agents were B. bronchiseptica (10%), Mycoplasma canis (24%), Mycoplasma cynos (21%), and S. zooepidemicus (2%). Over the five-year period, the positive cases ranged from 2-4% for CAV-2, 1-7% for CDV, 1-4% for CHV-1, 9-22% for CPIV, 4-13% for CRCoV, and 1-4% for CIV. Overall, the most prevalent pathogens associated with CIRDC were CPIV, M. canis, and M. cynos.
RESUMO
A rapid and cost-effective method to detect the infection of SARS-CoV-2 is fundamental to mitigating the current COVID-19 pandemic. Herein, a surface-enhanced Raman spectroscopy (SERS) sensor with a deep learning algorithm has been developed for the rapid detection of SARS-CoV-2 RNA in human nasopharyngeal swab (HNS) specimens. The SERS sensor was prepared using a silver nanorod array (AgNR) substrate by assembling DNA probes to capture SARS-CoV-2 RNA. The SERS spectra of HNS specimens were collected after RNA hybridization, and the corresponding SERS peaks were identified. The RNA detection range was determined to be 103-109 copies/mL in saline sodium citrate buffer. A recurrent neural network (RNN)-based deep learning model was developed to classify 40 positive and 120 negative specimens with an overall accuracy of 98.9%. For the blind test of 72 specimens, the RNN model gave a 97.2% accuracy prediction for positive specimens and a 100% accuracy for negative specimens. All the detections were performed in 25 min. These results suggest that the DNA-functionalized AgNR array SERS sensor combined with a deep learning algorithm could serve as a potential rapid point-of-care COVID-19 diagnostic platform.
Assuntos
COVID-19 , Aprendizado Profundo , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , RNA Viral/genética , Análise Espectral Raman/métodos , Pandemias , NasofaringeRESUMO
Laboratory diagnoses of animal diseases has advanced tremendously in recent decades with the advent of cutting-edge technologies such as real-time polymerase chain reaction, next generation sequencing (NGS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and others However, most of these technologies need sophisticated equipment, laboratory space and highly skilled workforce. Therefore, there is an increasing market demand for point-of-care testing (POCT) in animal health and disease diagnostics. A wide variety of assays based on antibodies, antigens, nucleic acid, and nanopore sequencing are currently available. Each one of these tests have their own advantages and disadvantages. However, a number of research and developmental activities are underway in both academia and industry to improve the existing tests and develop newer and better tests in terms of sensitivity, specificity, turnaround time and affordability. In both companion and food animal disease diagnostics, POCT has an increasing role to play, especially in resource-limited settings. It plays a critical role in improving animal health and wellbeing in rural communities in low- and middle-income countries. At the same time, ensuring high standard of quality through proper validation, quality assurance and regulation of these assays are very important for accurate diagnosis, surveillance, control and management of animal diseases. This review addresses the different types of POCTs currently available for companion and food animal disease diagnostics, tests in the pipeline and their advantages and disadvantages.
RESUMO
Coronavirus disease 2019 is a public health challenge requiring rapid testing for the detection of infections and transmission. Nucleic acid amplification tests targeting SARS coronavirus 2 (CoV2) are used to detect CoV2 in clinical samples. Real-time reverse transcription quantitative PCR is the standard nucleic acid amplification test for CoV2, although reverse transcription loop-mediated isothermal amplification is used in diagnostics. The authors demonstrate a sequence-specific reverse transcription loop-mediated isothermal amplification-based nucleic acid amplification assay that is finished within 30 min using minimally processed clinical nasal swab samples and describe a fluorescence-quenched reverse transcription loop-mediated isothermal amplification assay using labeled primers and a quencher oligonucleotide. This assay can achieve rapid (30 min) and sensitive (1000 plaque-forming units/ml) fluorescence detection of CoV2 (WA1/2020), B.1.1.7 (Alpha) and variants of concern Delta (B.1.617.2) and Omicron (B.1.1.529) in nasal samples.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Viral/genética , Transcrição Reversa , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
The objective of this short communication was to discuss two field case investigations to determine the usefulness of a milk-line sampling device to detect bacteria either coming from a group of cows suffering from mastitis or from the milking line potentially contaminated with environmental bacteria. In Case 1, the in-line sampling device was able to detect certain segments of the milk-line contaminated with environmental bacteria, but not coming from the cows. In Case 2, 19 out of 25 pooled in-line samples were in agreement with at least one of the individual sampled cows shedding either Staphylococcus or Streptococcus spp. or both, which accounted for 76% accordance between both methods. The in-line system, although not perfect, provided a reliable method to detect individual cows shedding mastitis-causing organisms. In conclusion, the milk-line sampling device system was able to help identify foodborne pathogens. Regular monitoring of the microbial quality of milk through a milk-line sampling device is recommended for groups of cows within the dairy herd to detect potential mastitis-causing microorganisms. Furthermore, the sampling device was an effective tool to screen the efficacy of cleaning and disinfecting mechanisms of the milk lines to identify and control potential foodborne pathogens that are collected in the bulk tank.
Assuntos
Criação de Animais Domésticos/métodos , Leite/microbiologia , Staphylococcus/isolamento & purificação , Streptococcus/isolamento & purificação , Animais , Argentina , Estados UnidosRESUMO
Staphylococcus pseudintermedius is a pathogen of veterinary importance, as it is the major causative agent of superficial pyoderma in dogs. We present the complete genome sequences of six strains of S. pseudintermedius derived from dogs affected with epidermal collarettes and superficial bacterial folliculitis, which are two variants of superficial pyoderma.
RESUMO
The COVID-19 pandemic caused by the SARS-CoV-2 is a serious health threat causing worldwide morbidity and mortality. Real-time reverse transcription PCR (RT-qPCR) is currently the standard for SARS-CoV-2 detection. Although various nucleic acid-based assays have been developed to aid the detection of SARS-CoV-2 from COVID-19 patient samples, the objective of this study was to develop a diagnostic test that can be completed in 30 minutes without having to isolate RNA from the samples. Here, we present an RNA amplification detection method performed using reverse transcription loop-mediated isothermal amplification (RT-LAMP) reactions to achieve specific, rapid (30 min), and sensitive (<100 copies) fluorescent detection in real-time of SARS-CoV-2 directly from patient nasopharyngeal swab (NP) samples. When compared to RT-qPCR, positive NP swab samples assayed by fluorescent RT-LAMP had 98% (n = 41/42) concordance and negative NP swab samples assayed by fluorescent RT-LAMP had 87% (n = 59/68) concordance for the same samples. Importantly, the fluorescent RT-LAMP results were obtained without purification of RNA from the NP swab samples in contrast to RT-qPCR. We also show that the fluorescent RT-LAMP assay can specifically detect live virus directly from cultures of both SARS-CoV-2 wild type (WA1/2020), and a SARS-CoV-2 B.1.1.7 (alpha) variant strain with equal sensitivity to RT-qPCR. RT-LAMP has several advantages over RT-qPCR including isothermal amplification, speed (<30 min), reduced costs, and similar sensitivity and specificity.
Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Testes Diagnósticos de Rotina/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/isolamento & purificação , Humanos , RNA Viral/isolamento & purificação , Sensibilidade e EspecificidadeRESUMO
An outbreak of 92 abortions out of 1,700 pregnant cows (5.41%) in a period of 3 weeks (19 May to 05 June 2019) occurred in a Georgia Dairy, USA, in cattle that were between 3 and 7 months of gestation. Two sets of samples (aborted fetuses' organs, placental tissues, aborted cows blood) were submitted for laboratory investigations at the Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia (TVDIL, Tifton, GA, USA). An abortion panel testing for the major abortion-causing agents [e.g. Bovine Viral Diarrhoea Virus (BVDV), Infectious Bovine Rhinotracheitis Virus/ Bovine Herpes Virus-I (IBR/ BHV-I), Brucella spp., Leptospira spp.] was conducted on several of the samples. On the first set of samples, microbial cultures, serology and PCR tests for the common abortifacient agents revealed the presence of Neospora caninum (N. caninum) DNA, which was positive by PCR on the placenta and fetal tissues. The second set of diagnostic investigations also identified two out of three submitted freshly aborted fetuses to be positive for N. caninum by PCR and immunohistochemistry. Moreover, all three dams were also sero-positive for N. caninum. The entire herd was being fed on grass silage harvested from a pasture where feral pigs were hunted previously and carcasses were left behind. As a consequence of this action a large population of wild coyotes were attracted to these carcasses, and likely contaminated the pasture with potential N. caninum-infected feces. After the abortion outbreak was resolved, it was recommended that the farmers should avoid disposal of cadavers of hunted animals in the wild, as it could attract carnivorous and omnivorous animals that may potentially spread the disease to the cattle and other wildlife.
Assuntos
Aborto Animal/epidemiologia , Doenças dos Bovinos/parasitologia , Coccidiose/veterinária , Surtos de Doenças/veterinária , Neospora/isolamento & purificação , Aborto Animal/parasitologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Coccidiose/epidemiologia , Coccidiose/parasitologia , Indústria de Laticínios , Georgia/epidemiologiaRESUMO
OBJECTIVE: To establish a pathoepidemiological model to evaluate the role of SARS-CoV-2 infection in the first 10 companion animals that died while infected with SARS-CoV-2 in the US. ANIMALS: 10 cats and dogs that tested positive for SARS-CoV-2 and died or were euthanized in the US between March 2020 and January 2021. PROCEDURES: A standardized algorithm was developed to direct case investigations, determine the necessity of certain diagnostic procedures, and evaluate the role, if any, that SARS-CoV-2 infection played in the animals' course of disease and death. Using clinical and diagnostic information collected by state animal health officials, state public health veterinarians, and other state and local partners, this algorithm was applied to each animal case. RESULTS: SARS-CoV-2 was an incidental finding in 8 animals, was suspected to have contributed to the severity of clinical signs leading to euthanasia in 1 dog, and was the primary reason for death for 1 cat. CONCLUSIONS AND CLINICAL RELEVANCE: This report provides the global community with a standardized process for directing case investigations, determining the necessity of certain diagnostic procedures, and determining the clinical significance of SARS-CoV-2 infections in animals with fatal outcomes and provides evidence that SARS-CoV-2 can, in rare circumstances, cause or contribute to death in pets.
Assuntos
COVID-19 , Doenças do Gato , Doenças do Cão , Animais , COVID-19/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/epidemiologia , Gatos , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Cães , Animais de Estimação , SARS-CoV-2RESUMO
Whole-genome sequencing (WGS) has changed our understanding of bacterial pathogens, aiding outbreak investigations and advancing our knowledge of their genetic features. However, there has been limited use of genomics to understand antimicrobial resistance of veterinary pathogens, which would help identify emerging resistance mechanisms and track their spread. The objectives of this study were to evaluate the correlation between resistance genotypes and phenotypes for Staphylococcus pseudintermedius, a major pathogen of companion animals, by comparing broth microdilution antimicrobial susceptibility testing and WGS. From 2017-2019, we conducted antimicrobial susceptibility testing and WGS on S. pseudintermedius isolates collected from dogs in the United States as a part of the Veterinary Laboratory Investigation and Response Network (Vet-LIRN) antimicrobial resistance monitoring program. Across thirteen antimicrobials in nine classes, resistance genotypes correlated with clinical resistance phenotypes 98.4 % of the time among a collection of 592 isolates. Our findings represent isolates from diverse lineages based on phylogenetic analyses, and these strong correlations are comparable to those from studies of several human pathogens such as Staphylococcus aureus and Salmonella enterica. We uncovered some important findings, including that 32.3 % of isolates had the mecA gene, which correlated with oxacillin resistance 97.0 % of the time. We also identified a novel rpoB mutation likely encoding rifampin resistance. These results show the value in using WGS to assess antimicrobial resistance in veterinary pathogens and to reveal putative new mechanisms of resistance.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Monitoramento Epidemiológico/veterinária , Genômica/métodos , Infecções Estafilocócicas/veterinária , Staphylococcus/efeitos dos fármacos , Staphylococcus/genética , Animais , Proteínas de Bactérias/genética , Canadá , Doenças do Cão/microbiologia , Cães/microbiologia , Genômica/normas , Genótipo , Testes de Sensibilidade Microbiana , Fenótipo , Filogenia , Reprodutibilidade dos Testes , Infecções Estafilocócicas/microbiologia , Staphylococcus/isolamento & purificação , Estados Unidos , Sequenciamento Completo do GenomaRESUMO
BACKGROUND: Leptospirosis, caused by pathogenic Leptospira spp., is a zoonotic infection that affects humans, dogs and many other mammalian species. Virtually any mammalian species can act as asymptomatic reservoir, characterized by chronic renal carriage and shedding of a host-adapted leptospiral serovar. Environmental contamination by chronic shedders results in acquisition of infection by humans and susceptible animals. METHODS: In this study, we investigated if clinically normal shelter dogs and cats harbor leptospires in their kidneys by screening urine samples for the presence of leptospiral DNA by a TaqMan based-quantitative PCR (qPCR) that targets pathogen-associated lipl32 gene. To identify the infecting leptospiral species, a fragment of leptospiral rpoB gene was PCR amplified and sequenced. Additionally, we measured Leptospira-specific serum antibodies using the microscopic agglutination test (MAT), a gold standard in leptospiral serology. RESULTS: A total of 269 shelter animals (219 dogs and 50 cats) from seven shelters located in the tri-state area of western Virginia, eastern Tennessee, and southeastern Kentucky were included in this study. All cats tested negative by both qPCR and MAT. Of the 219 dogs tested in the study, 26/198 (13.1%, 95% CI: 8.4-17.8%) were positive for leptospiral DNA in urine by qPCR and 38/211 (18.0%, 95% CI: 12.8-23.2%) were seropositive by MAT. Twelve dogs were positive for both qPCR and MAT. Fourteen dogs were positive by qPCR but not by MAT. Additionally, leptospiral rpoB gene sequencing from a sub-set of qPCR-positive urine samples (n = 21) revealed L. interrogans to be the leptospiral species shed by dogs. CONCLUSIONS: These findings have significant implications regarding animal and public health in the Cumberland Gap Region and possibly outside where these animals may be adopted.
Assuntos
Derrame de Bactérias , Doenças do Cão/microbiologia , Leptospira/fisiologia , Leptospirose/microbiologia , Leptospirose/veterinária , Testes de Aglutinação , Animais , Região dos Apalaches , Cães , Geografia , Leptospirose/urina , PrevalênciaRESUMO
BACKGROUND: During gut colonization, the enteric pathogen Campylobacter jejuni must surmount the toxic effects of reactive oxygen species produced by its own metabolism, the host immune system, and intestinal microflora. Elucidation of C. jejuni oxidative stress defense mechanisms is critical for understanding Campylobacter pathophysiology. RESULTS: The mechanisms of oxidative stress defense in C. jejuni were characterized by transcriptional profiling and phenotypic analysis of wild-type and mutant strains. To define the regulon of the peroxide-sensing regulator, PerR, we constructed an isogenic DeltaperR mutant and compared its transcriptome profile with that of the wild-type strain. Transcriptome profiling identified 104 genes that belonged to the PerR regulon. PerR appears to regulate gene expression in a manner that both depends on and is independent of the presence of iron and/or H2O2. Mutation of perR significantly reduced motility. A phenotypic analysis using the chick colonization model showed that the DeltaperR mutant exhibited attenuated colonization behavior. An analysis of changes in the transcriptome induced by exposure to H2O2, cumene hydroperoxide, or menadione revealed differential expression of genes belonging to a variety of biological pathways, including classical oxidative stress defense systems, heat shock response, DNA repair and metabolism, fatty acid biosynthesis, and multidrug efflux pumps. Mutagenic and phenotypic studies of the superoxide dismutase SodB, the alkyl-hydroxyperoxidase AhpC, and the catalase KatA, revealed a role for these proteins in oxidative stress defense and chick gut colonization. CONCLUSION: This study reveals an interplay between PerR, Fur, iron metabolism and oxidative stress defense, and highlights the role of these elements in C. jejuni colonization of the chick cecum and/or subsequent survival.
Assuntos
Proteínas de Bactérias/genética , Campylobacter jejuni/genética , Estresse Oxidativo , Regulon , Proteínas Repressoras/genética , Animais , Proteínas de Bactérias/metabolismo , Derivados de Benzeno/farmacologia , Campylobacter jejuni/metabolismo , Campylobacter jejuni/patogenicidade , Ceco/microbiologia , Galinhas/microbiologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Peróxido de Hidrogênio/farmacologia , Ferro/metabolismo , Mutagênese , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , RNA Bacteriano/genética , Proteínas Repressoras/metabolismo , Vitamina K 3/farmacologiaRESUMO
Rapid and sensitive detection of methicillin-resistant Staphylococcus aureus is crucial for effective treatment and control of clinical infections caused by this bacterium. The goal of this study is to develop a CE-based detection method for multiplexed identification of a femA sequence specific for S. aureus and a unique mecA sequence encoding methicillin resistance. Blood samples spiked with known concentrations of bacteria were used for testing. Crude cell lysates were prepared by treating the spiked blood samples with DNazol Direct reagent and used as the template for isothermal amplification of mecA and femA genes. The amplified gene products then underwent a cycling probe reaction (CPR)-based assay to generate a short fluorophore-labeled oligonucleotide for detection in a CZE-LIF system. The assay enables a gene-specific fluorophore-labeled DNA-RNA-DNA chimeric probe to hybridize with complementary target in the presence of RNase H enzyme. The RNase H enzyme specifically cleaves probe RNA residues of the duplex, releasing a fluorophore fragment for detection and the target for recycling and hybridization with another chimeric probe. Intact and cleaved probe fragments were separated and detected using a CZE-LIF system. The limit of detection for isothermal amplification and CPR-CZE-LIF was approximately 10(4) colony-forming units of bacteria/mL of blood. This method accurately detects methicillin-resistant S. aureus within 3 h.
Assuntos
Eletroforese Capilar/métodos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sondas de DNA/genética , DNA Bacteriano/genética , Resistência a Meticilina/genética , Proteínas de Ligação às Penicilinas , Reação em Cadeia da Polimerase/métodos , Sensibilidade e EspecificidadeRESUMO
Campylobacter jejuni causes food- and waterborne gastroenteritis, and as such it must survive passage through the stomach in order to reach the gastrointestinal tract. While little is known about how C. jejuni survives transit through the stomach, its low infectious dose suggests it is well equipped to sense and respond to acid shock. In this study, the transcriptional profile of C. jejuni NCTC 11168 was obtained after the organism was exposed to in vitro and in vivo (piglet stomach) acid shock. The observed down-regulation of genes encoding ribosomal proteins likely reflects the need to reshuffle energy toward the expression of components required for survival. Acid shock also caused C. jejuni to up-regulate genes involved in stress responses. These included heat shock genes as well as genes involved in the response to oxidative and nitrosative stress. A role for the chaperone clpB in acid resistance was confirmed in vitro. Some genes showed expression patterns that were markedly different in vivo and in vitro, which likely reflects the complexity of the in vivo environment. For instance, transit through the stomach was characterized by up-regulation of genes that encode products that are involved in the use of nitrite as a terminal electron acceptor and down-regulation of genes that are involved in capsular polysaccharide expression. In conclusion, this study has enabled us to understand how C. jejuni modulates gene expression in response to acid shock in vitro and to correlate this with gene expression profiles of C. jejuni as it transits through the host stomach.