Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 16(15): 7443-9, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18603434

RESUMO

A tetrahydroaminoquinoline-based library was generated with the goals of finding small molecule modulators of protein-protein interactions. Several library members as well as other related intermediates were tested for their ability to bind to Bcl-X(L) and Mcl-1 by in silico and (15)N NMR studies. The NMR study led to the identification of the tetrahydroaminoquinoline-based nude scaffold, 7 as a weak binder (K(d)=200 microM for Bcl-X(L) and K(d)=300 microM for Mcl-1) to both proteins. Using this scaffold as the starting material, we then synthesized a focused library of only 9 derivatives by applying the principles of a fragment-based approach. All these derivatives were then tested by NMR and this led to the discovery of a novel, small molecule (MIPRALDEN, 17) as a binder to Mcl-1 and Bcl-X(L) (K(D)=25 and 70 microM). This finding is novel because to our knowledge there are not many small molecules known in the literature that bind to Mcl-1.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/química , Quinolinas/química , Quinolinas/farmacologia , Proteína bcl-X/química , Simulação por Computador , Modelos Moleculares , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ligação Proteica , Relação Estrutura-Atividade
2.
J Mol Biol ; 379(4): 787-802, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18479705

RESUMO

Using the MP1-p14 scaffolding complex from the mitogen-activated protein kinase signaling pathway as model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. Hot spots are located by virtual alanine-scanning consensus predictions over three different energy functions and two different single-structure representations of the complex. Refined binding affinity predictions for select hot-spot mutations are carried out by applying first-principle methods such as the molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy (SIE) to the molecular dynamics (MD) trajectories for mutated and wild-type complexes. Here, predicted hot-spot residues were actually mutated to alanine, and crystal structures of the mutated complexes were determined. Two mutated MP1-p14 complexes were investigated, the p14(Y56A)-mutated complex and the MP1(L63A,L65A)-mutated complex. Alternative ways to generate MD ensembles for mutant complexes, not relying on crystal structures for mutated complexes, were also investigated. The SIE function, fitted on protein-ligand binding affinities, gave absolute binding affinity predictions in excellent agreement with experiment and outperformed standard MM-GBSA predictions when tested on the MD ensembles of Ras-Raf and Ras-RalGDS protein-protein complexes. For wild-type and mutant MP1-p14 complexes, SIE predictions of relative binding affinities were supported by a yeast two-hybrid assay that provided semiquantitative relative interaction strengths. Results on the MP1-mutated complex suggested that SIE predictions deteriorate if mutant MD ensembles are approximated by just mutating the wild-type MD trajectory. The SIE data on the p14-mutated complex indicated feasibility for generating mutant MD ensembles from mutated wild-type crystal structure, despite local structural differences observed upon mutation. For energetic considerations, this would circumvent costly needs to produce and crystallize mutated complexes. The sensitized protein-protein interface afforded by the p14(Y56A) mutation identified here has practical applications in screening-based discovery of first-generation small-molecule hits for further development into specific modulators of the mitogen-activated protein kinase signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Cristalografia por Raios X , Sistema de Sinalização das MAP Quinases , Modelos Moleculares , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Técnicas do Sistema de Duplo-Híbrido
3.
J Chem Inf Model ; 47(1): 122-33, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17238257

RESUMO

We present a binding free energy function that consists of force field terms supplemented by solvation terms. We used this function to calibrate the solvation model along with the binding interaction terms in a self-consistent manner. The motivation for this approach was that the solute dielectric-constant dependence of calculated hydration gas-to-water transfer free energies is markedly different from that of binding free energies (J. Comput. Chem. 2003, 24, 954). Hence, we sought to calibrate directly the solvation terms in the context of a binding calculation. The five parameters of the model were systematically scanned to best reproduce the absolute binding free energies for a set of 99 protein-ligand complexes. We obtained a mean unsigned error of 1.29 kcal/mol for the predicted absolute binding affinity in a parameter space that was fairly shallow near the optimum. The lowest errors were obtained with solute dielectric values of Din = 20 or higher and scaling of the intermolecular van der Waals interaction energy by factors ranging from 0.03 to 0.15. The high apparent Din and strong van der Waals scaling may reflect the anticorrelation of the change in solvated potential energy and configurational entropy, that is, enthalpy-entropy compensation in ligand binding (Biophys. J. 2004, 87, 3035-3049). Five variations of preparing the protein-ligand data set were explored in order to examine the effect of energy refinement and the presence of bound water on the calculated results. We find that retaining water in the final protein structure used for calculating the binding free energy is not necessary to obtain good results; that is the continuum solvation model is sufficient. Virtual screening enrichment studies on estrogen receptor and thymidine kinase showed a good ability of the binding free energy function to recover true hits in a collection of decoys.


Assuntos
Proteínas/química , Solubilidade , Termodinâmica , Ligantes , Modelos Químicos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA