Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(19)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32907846

RESUMO

Planar cell polarity (PCP) proteins localize asymmetrically to instruct cell polarity within the tissue plane, with defects leading to deformities of the limbs, neural tube and inner ear. Wnt proteins are evolutionarily conserved polarity cues, yet Wnt mutants display variable PCP defects; thus, how Wnts regulate PCP remains unresolved. Here, we have used the developing cochlea as a model system to show that secreted Wnts regulate PCP through polarizing a specific subset of PCP proteins. Conditional deletion of Wntless or porcupine, both of which are essential for secretion of Wnts, caused misrotated sensory cells and shortened cochlea - both hallmarks of PCP defects. Wntless-deficient cochleae lacked the polarized PCP components dishevelled 1/2 and frizzled 3/6, while other PCP proteins (Vangl1/2, Celsr1 and dishevelled 3) remained localized. We identified seven Wnt paralogues, including the major PCP regulator Wnt5a, which was, surprisingly, dispensable for planar polarization in the cochlea. Finally, Vangl2 haploinsufficiency markedly accentuated sensory cell polarization defects in Wntless-deficient cochlea. Together, our study indicates that secreted Wnts and Vangl2 coordinate to ensure proper tissue polarization during development.


Assuntos
Cóclea/embriologia , Cóclea/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Wnt/metabolismo , Animais , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Genótipo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Microscopia Eletrônica de Varredura , Proteínas do Tecido Nervoso/genética , Reação em Cadeia da Polimerase , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética
2.
J Neurosci ; 32(12): 4196-211, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22442082

RESUMO

In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.


Assuntos
Caderinas/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Axônios/metabolismo , Caderinas/genética , Caderinas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Neurônios GABAérgicos/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/genética , Microscopia Imunoeletrônica , Mutação/genética , Interferência de RNA/fisiologia , Sinapses/genética , Vesículas Sinápticas/genética
3.
Development ; 137(21): 3663-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20876647

RESUMO

Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in the ventral nerve cord (VNC) of C. elegans. Notably follower axons, which exclusively depend on pioneer axons for correct navigation, frequently separated from the pioneer. fmi-1 is the sole C. elegans ortholog of Drosophila flamingo and vertebrate Celsr genes, and this phenotype defines a new role for this important molecule in follower axon navigation. FMI-1 has a unique and strikingly conserved structure with cadherin and C-terminal G-protein coupled receptor domains and could mediate cell-cell adhesion and signaling functions. We found that follower axon navigation depended on the extracellular but not on the intracellular domain, suggesting that FMI-1 mediates primarily adhesion between pioneer and follower axons. By contrast, pioneer axon navigation required the intracellular domain, suggesting that FMI-1 acts as receptor transducing a signal in this case. Our findings indicate that FMI-1 is a cell-type dependent axon guidance factor with different domain requirements for its different functions in pioneers and followers.


Assuntos
Axônios/fisiologia , Caderinas/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/embriologia , Movimento Celular/fisiologia , Vias Neurais/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/metabolismo , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caderinas/química , Caderinas/genética , Caderinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular/genética , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Biológicos , Vias Neurais/metabolismo , Técnicas de Rastreamento Neuroanatômico , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
4.
J Clin Invest ; 128(4): 1641-1656, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29553487

RESUMO

During development, Sox2 is indispensable for cell division and differentiation, yet its roles in regenerating tissues are less clear. Here, we used combinations of transgenic mouse models to reveal that Sox2 haploinsufficiency (Sox2haplo) increases rather than impairs cochlear regeneration in vivo. Sox2haplo cochleae had delayed terminal mitosis and ectopic sensory cells, yet normal auditory function. Sox2haplo amplified and expanded domains of damage-induced Atoh1+ transitional cell formation in neonatal cochlea. Wnt activation via ß-catenin stabilization (ß-cateninGOF) alone failed to induce proliferation or transitional cell formation. By contrast, ß-cateninGOF caused proliferation when either Sox2haplo or damage was present, and transitional cell formation when both were present in neonatal, but not mature, cochlea. Mechanistically, Sox2haplo or damaged neonatal cochleae showed lower levels of Sox2 and Hes5, but not of Wnt target genes. Together, our study unveils an interplay between Sox2 and damage in directing tissue regeneration and Wnt responsiveness and thus provides a foundation for potential combinatorial therapies aimed at stimulating mammalian cochlear regeneration to reverse hearing loss in humans.


Assuntos
Cóclea/fisiologia , Haploinsuficiência , Regeneração , Fatores de Transcrição SOXB1/metabolismo , Via de Sinalização Wnt , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Perda Auditiva/terapia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA