Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Jpn J Clin Oncol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38651176

RESUMO

OBJECTIVE: Nivolumab plus ipilimumab is a recommended first-line therapy regimen for metastatic renal cell carcinoma. However, it is not clear which patient characteristics are associated with its effectiveness. METHODS: We retrospectively examined 67 metastatic renal cell carcinoma patients treated with nivolumab plus ipilimumab as a first-line therapy in multiple institutions from September 2018 to August 2022. We analyzed the relationships between survival outcomes and patient-related variables, including paraneoplastic symptoms. We also analyzed the relationships between changes in symptoms and parameters and outcomes. RESULTS: Of the 67 patients, 32 patients had paraneoplastic symptoms. The median progression-free survival was 14.9 months and median overall survival was 43.3 months. The objective response rate was 49.25% (33 patients), including two patients with complete response. Patients with cytoreductive nephrectomy, bone metastasis, high C-reactive protein levels and paraneoplastic symptoms were significantly correlated with short progression-free survival in the univariate analysis. Multivariate analysis of these factors showed that the presence of paraneoplastic symptoms at treatment initiation remained an independent predictor of progression-free survival. Of the 32 patients with paraneoplastic symptoms at treatment initiation, 12 patients had symptomatic improvement and 20 did not. The 1-year progression-free survival rates were significantly longer in improved patients compared with those with no improvement. CONCLUSIONS: Patients without cytoreductive nephrectomy and with bone metastasis, liver metastasis, high C-reactive protein levels and paraneoplastic symptoms were significantly correlated with shorter progression-free survival. The presence of paraneoplastic symptoms was an independent predictor of progression-free survival. Improvement in paraneoplastic symptoms may reflect the treatment efficacy of nivolumab plus ipilimumab.

2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047538

RESUMO

Nicotianamine (NA) is produced by NA synthase (NAS), which contains three genes in rice and is responsible for chelating metals such as iron (Fe) and zinc (Zn), as well as preserving metal homeostasis. In this study, we generated a transgenic plant (23D) that shows simultaneous activation of OsNAS2 and OsNAS3 by crossing two previously identified activation-tagged mutants, OsNAS2-D1 (2D) and OsNAS3-D1 (3D). Concomitant activation of both genes resulted in the highest Fe and Zn concentrations in shoots and roots of the 23D plants grown under normal conditions and Fe and Zn limited growth conditions. Expression of genes for the biosynthesis of mugineic acid family phytosiderophores (MAs) and Fe and Zn uptake were enhanced in 23D roots. Additionally, 23D plants displayed superior growth to other plants at higher pH levels. Importantly, 23D seeds had NA and 2'-deoxymugineic acid (DMA) concentrations that were 50.6- and 10.0-fold higher than those of the WT. As a result, the mature grain Fe and Zn concentrations of the 23D plant were 4.0 and 3.5 times greater, respectively, than those of the WT. Furthermore, 23D plants exhibited the greatest resistance to excess metals. Our research suggests that simultaneous activation of OsNAS2 and OsNAS3 can enhance Fe and Zn accumulation in rice grains while also increasing plant tolerance to growing situations with metal deficiency and excess metal availability.


Assuntos
Ferro , Oryza , Ferro/metabolismo , Zinco/metabolismo , Oryza/metabolismo , Sementes/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Hinyokika Kiyo ; 69(8): 207-214, 2023 Aug.
Artigo em Japonês | MEDLINE | ID: mdl-37667597

RESUMO

We analyzed 45 patients who were diagnosed with renal cell carcinoma with inferior vena cava tumor thrombus (IVC) and underwent surgical resection at Nagasaki University Hospital during the 17 years from March 2003 to November 2020. The median overall survival (OS) was 68.5, 53.5, 45.7, and 20.4 months, respectively, according to the tumor thrombus level (Lv) of I, II, III and IV, with a median level of (P=0.025). In multivariate analysis, pathological sarcomatoid changes were associated with risk of tumor recurrence in the postoperative complete remission group, and IVC thrombus level above Lv III was associated with poor prognosis in the postoperative incomplete remission group. On postoperative systemic treatment for the postoperative recurrence group and the incomplete remission group, overall survival was significantly prolonged in cases using immune checkpoint inhibitors. The results of surgical treatment of renal cell carcinoma with IVC tumor embolization were analyzed. Patients who underwent surgical resection and achieved postoperative complete remission had a relatively long prognosis with a median OS of more than 6 years. In contrast, patients with metastases, especially those with postoperative incomplete remission group, had a poor prognosis despite surgical resection, depending on the patient's situation.


Assuntos
Carcinoma de Células Renais , Embolização Terapêutica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/cirurgia , Veia Cava Inferior/cirurgia , Neoplasias Renais/cirurgia
4.
Hinyokika Kiyo ; 69(2): 33-39, 2023 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-36863869

RESUMO

Detection of post-transplant malignant tumors and the analysis of the associated risk factors is important for monitoring the progress after renal transplantation. In this study, we retrospectively examined the medical records of 298 patients who underwent renal transplantation at two facilities in Nagasaki Prefecture (Nagasaki University Hospital and National Hospital Organization Nagasaki Medical Center). Of the 298 patients, 45 (15.1%) patients had developed malignant tumors with 50 lesions. The most common type of malignant tumor was skin cancer (eight patients; 17.8%), followed by renal cancer (six patients; 13.3%), and pancreatic cancer and colorectal cancer, (four patients; 9.0% each). Five patients (11.1%) had multiple cancers, four of whom had skin cancer. The cumulative incidence within 10 and 20 years after renal transplantation was 6.0 and 17.9%, respectively. Univariate analysis identified age at transplantation and administration of cyclosporine and rituximab as risk factors, while multivariate analysis identified age at transplantation and administration of rituximab as independent factors. The administration of rituximab was associated with the development of malignant tumors. However, further investigation is required to establish the association with post-transplant malignant neoplasms.


Assuntos
Neoplasias Renais , Transplante de Rim , Neoplasias Cutâneas , Humanos , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Rituximab
5.
Hinyokika Kiyo ; 68(12): 369-376, 2022 Dec.
Artigo em Japonês | MEDLINE | ID: mdl-36627770

RESUMO

Patients on chronic dialysis for end-stage renal disease (ESRD) show an increased incidence of renal cell carcinoma (RCC). We investigated the clinicopathological characteristics and outcomes of 54 patients who underwent nephrectomy for RCC due to ESRD between 1992 and 2019. The patients consisted of 44 men and 10 women, with a median age of 62.9 years. The median duration of dialysis before surgery was 12.9 years. The clinical stage of the 54 RCCs was stage I in 44, stage II in 1, stage III in 1, and stage IV in 8. With a median follow-up of 5.1 years after surgery, the 5-year cancer-specific and overall survival rates were 84.3 and 61.8%, respectively. Patients with symptomatic RCC had a longer period of dialysis, presented with larger tumors of higher grade and stage, and had worse prognosis compared with those with incidentally discovered RCC. Cox proportional hazards analysis performed with clinicopathological features and symptomatic/incidental detection showed that older age and symptomatic RCC were independently associated with worse overall survival. Our data show that early detection is important for a good prognosis.


Assuntos
Carcinoma de Células Renais , Falência Renal Crônica , Neoplasias Renais , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/patologia , Neoplasias Renais/cirurgia , Neoplasias Renais/patologia , Diálise Renal/efeitos adversos , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Prognóstico , Nefrectomia/efeitos adversos , Estudos Retrospectivos
6.
Plant Mol Biol ; 104(6): 629-645, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32909184

RESUMO

KEY MESSAGE: Rice aconitase gene OsACO1 is involved in the iron deficiency-signaling pathway for the expression of iron deficiency-inducible genes, either thorough enzyme activity or possible specific RNA binding for post-transcriptional regulation. Iron (Fe) is an essential element for virtually all living organisms. When plants are deficient in Fe, Fe acquisition systems are activated to maintain Fe homeostasis, and this regulation is mainly executed at the gene transcription level. Many molecules responsible for Fe uptake, translocation, and storage in plants have been identified and characterized. However, how plants sense Fe status within cells and then induce a transcriptional response is still unclear. In the present study, we found that knockdown of the OsACO1 gene, which encodes an aconitase in rice, leads to the down-regulation of selected Fe deficiency-inducible genes involved in Fe uptake and translocation in roots, and a decrease in Fe concentration in leaves, even when grown under Fe-sufficient conditions. OsACO1 knockdown plants showed a delayed transcriptional response to Fe deficiency compared to wild-type plants. In contrast, overexpression of OsACO1 resulted in the opposite effects. These results suggest that OsACO1 is situated upstream of the Fe deficiency-signaling pathway. Furthermore, we found that the OsACO1 protein potentially has RNA-binding activity. In vitro screening of RNA interactions with OsACO1 revealed that RNA potentially forms a unique stem-loop structure that interacts with OsACO1 via a conserved GGUGG motif within the loop structure. These results suggest that OsACO1 regulate Fe deficiency response either thorough enzyme activity catalyzing isomerization of citrate, or specific RNA binding for post-transcriptional regulation.


Assuntos
Aconitato Hidratase/genética , Ferro/metabolismo , Oryza/enzimologia , Aconitato Hidratase/metabolismo , Citratos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Homeostase , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais
7.
Microbiol Immunol ; 62(2): 99-110, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29193290

RESUMO

There was a significant amount of non-specific, but not of allergen (e.g., papain, mite feces and four kinds of pollen)-specific, IgE antibodies (Abs) in the sera of normal mice. An i.n. injection of each allergen without adjuvant into mice caused an increase in total IgE Ab titers with a similar time course in the serum. However, the stage of initiation of allergy varied from allergen to allergen. Submandibular lymph node cells from normal mice contained papain-, but not mite feces- or pollen-specific IgE+ cells and an i.n. injection of papain induced papain-specific IgE Abs in the serum. In contrast, one (i.n.) or two (i.n. and s.c) injections of mite feces induced neither mite feces-specific IgE+ cells in the lymph nodes nor mite feces-specific IgE Abs in the serum. I.n. sensitization with cedar pollen induced cedar pollen-specific IgE+ small B cells in the lymph nodes on Day 10, when non-specific IgE Ab titers reached a peak in the serum, implying induction of related allergen-specific IgE+ small cells as well. In fact, a second (s.c.) injection of ragweed (or cedar) pollen into mice sensitized i.n. once with cedar (or ragweed) pollen, but not with mite feces, induced a large amount of ragweed (or cedar) pollen-specific IgE Abs in the serum. These results indicate that when firstly-sensitized non-specific IgE+ small B cells in mouse lymph nodes include some secondly-sensitized allergen-specific ones, mice produce IgE Abs specific for the secondly-injected allergen.


Assuntos
Alérgenos/imunologia , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Imunoglobulina E/imunologia , Adjuvantes Imunológicos , Animais , Proteínas de Artrópodes/imunologia , Sobrevivência Celular , Fezes , Imunoglobulina E/sangue , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ácaros , Papaína/imunologia , Pólen/imunologia
8.
Plant Mol Biol ; 95(4-5): 375-387, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28871478

RESUMO

KEY MESSAGE: Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.


Assuntos
Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endosperma/citologia , Endosperma/genética , Endosperma/metabolismo , Genes Reporter , Ferro/análise , Proteínas de Membrana Transportadoras/genética , Oryza/citologia , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
9.
J Exp Bot ; 68(7): 1785-1795, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369596

RESUMO

Rice (Oryza sativa) secretes 2'-deoxymugineic acid (DMA) to acquire insoluble iron (Fe) from the rhizosphere. In rice, DMA is synthesized by DMA synthase 1 (OsDMAS1), a member of the aldo-keto reductase super family. We screened OsDMAS1 paralogs for DMA synthesis. None of these paralogs displayed in vitro DMA synthesis activity, suggesting that rice only harbors one functional DMAS. We further characterized OsDMAS1 mutant plants. We failed to screen homozygous knock-out plants (dmas-1), so we characterized DMAS knock-down plants (dmas-kd1 and dmas-kd2). Under Fe-deficient conditions, dmas-kd1 plants were more chlorotic compared to the wild-type (WT) plants, and the expression of OsNAS3, OsYSL2, OsIRT1, and OsIRO2 was significantly up-regulated in the dmas-kd1 mutant, indicating that metal homeostasis was significantly disturbed. The secretion of DMA in dmas-kd1 was not significantly reduced. The dmas-kd1 plants accumulated less Fe in their roots compared to WT plants when grown with 10 µM FeSO4. The dmas-kd1 plants accumulated more Zn in their roots compared to WT plants under Fe-deficient, Fe-EDTA, and FeSO4 conditions. In both dehusked rice seeds (brown rice) and polished rice, no differences were observed for Fe, Cu, or Mn accumulation, whereas dmas-kd1 seeds significantly accumulated more Zn in brown rice. Our data suggests that rice only harbors one functional gene for DMA synthesis. In addition, the knock-down of OsDMAS1 significantly up-regulates the genes involved in Fe uptake and homeostasis.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Homeostase , Oryza/genética , Proteínas de Plantas/metabolismo
10.
J Biol Chem ; 290(46): 27688-99, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26432636

RESUMO

Iron is an essential metal element for all living organisms. Graminaceous plants produce and secrete mugineic acid family phytosiderophores from their roots to acquire iron in the soil. Phytosiderophores chelate and solubilize insoluble iron hydroxide in the soil. Subsequently, plants take up iron-phytosiderophore complexes through specific transporters on the root cell membrane. Phytosiderophores are also thought to be important for the internal transport of various transition metals, including iron. In this study, we analyzed TOM2 and TOM3, rice homologs of transporter of mugineic acid family phytosiderophores 1 (TOM1), a crucial efflux transporter directly involved in phytosiderophore secretion into the soil. Transgenic rice analysis using promoter-ß-glucuronidase revealed that TOM2 was expressed in tissues involved in metal translocation, whereas TOM3 was expressed only in restricted parts of the plant. Strong TOM2 expression was observed in developing tissues during seed maturation and germination, whereas TOM3 expression was weak during seed maturation. Transgenic rice in which TOM2 expression was repressed by RNA interference showed growth defects compared with non-transformants and TOM3-repressed rice. Xenopus laevis oocytes expressing TOM2 released (14)C-labeled deoxymugineic acid, the initial phytosiderophore compound in the biosynthetic pathway in rice. In onion epidermal and rice root cells, the TOM2-GFP fusion protein localized to the cell membrane, indicating that the TOM2 protein is a transporter for phytosiderophore efflux to the cell exterior. Our results indicate that TOM2 is involved in the internal transport of deoxymugineic acid, which is required for normal plant growth.


Assuntos
Proteínas de Transporte/metabolismo , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Animais , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Ordem dos Genes , Genes de Plantas , Proteínas de Membrana/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Sideróforos/metabolismo , Distribuição Tecidual , Xenopus laevis
11.
Plant Mol Biol ; 91(4-5): 533-47, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27143046

RESUMO

Under low iron availability, plants induce the expression of various genes involved in iron uptake and translocation at the transcriptional level. This iron deficiency response is affected by various plant hormones, but the roles of jasmonates in this response are not well-known. We investigated the involvement of jasmonates in rice iron deficiency responses. High rates of jasmonate-inducible genes were induced during the very early stages of iron deficiency treatment in rice roots. Many jasmonate-inducible genes were also negatively regulated by the ubiquitin ligases OsHRZ1 and OsHRZ2 and positively regulated by the transcription factor IDEF1. Ten out of 35 genes involved in jasmonate biosynthesis and signaling were rapidly induced at 3 h of iron deficiency treatment, and this induction preceded that of known iron deficiency-inducible genes involved in iron uptake and translocation. Twelve genes involved in jasmonate biosynthesis and signaling were also upregulated in HRZ-knockdown roots. Endogenous concentrations of jasmonic acid and jasmonoyl isoleucine tended to be rapidly increased in roots in response to iron deficiency treatment, whereas these concentrations were higher in HRZ-knockdown roots under iron-sufficient conditions. Analysis of the jasmonate-deficient cpm2 mutant revealed that jasmonates repress the expression of many iron deficiency-inducible genes involved in iron uptake and translocation under iron sufficiency, but this repression is partly canceled under an early stage of iron deficiency. These results indicate that jasmonate signaling is activated during the very early stages of iron deficiency, which is partly regulated by IDEF1 and OsHRZs.


Assuntos
Ciclopentanos/metabolismo , Deficiências de Ferro , Oryza/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Modelos Biológicos , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcrição Gênica
12.
J Exp Bot ; 67(5): 1357-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26685186

RESUMO

Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues.


Assuntos
Técnicas de Silenciamento de Genes , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Metabolismo Secundário , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Metaboloma/genética , Metabolômica , Mutação/genética , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Análise de Componente Principal , Metabolismo Secundário/genética , Transcrição Gênica , Transcriptoma/genética
13.
Plant J ; 77(2): 246-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24251791

RESUMO

Graminaceous plants release mugineic acid family phytosiderophores (MAs) to acquire iron from the soil. Here, we show that deoxymugineic acid (DMA) secretion from rice roots fluctuates throughout the day, and that vesicles accumulate in roots before MAs secretion. We developed transgenic rice plants that express rice nicotianamine (NA) synthase (NAS) 2 (OsNAS2) fused to synthetic green fluorescent protein (sGFP) under the control of its own promoter. In root cells, OsNAS2-sGFP fluorescence was observed in a dot-like pattern, moving dynamically within the cell. This suggests that these vesicles are involved in NA and DMA biosynthesis. A tyrosine motif and a di-leucine motif, which have been reported to be involved in cellular transport, are conserved in all identified NAS proteins in plants. OsNAS2 mutated in the tyrosine motif showed NAS activity and was localized to the vesicles; however, these vesicles stuck together and did not move. On the other hand, OsNAS2 mutated in the di-leucine motif lost NAS activity and did not localize to these vesicles. The amounts of NA and DMA produced and the amount of DMA secreted by OsNAS2-sGFP plants were significantly higher than in non-transformants and domain-mutated lines, suggesting that OsNAS2-sGFP, but not the mutated forms, was functional in vivo. Overall, the localization of NAS to vesicles and the transport of these vesicles are crucial steps in NA synthesis, leading to DMA synthesis and secretion in rice.


Assuntos
Alquil e Aril Transferases/metabolismo , Ferro/metabolismo , Mutação , Oryza/enzimologia , Raízes de Plantas/enzimologia , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Microscopia Eletrônica , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura
14.
Plant Mol Biol ; 88(1-2): 165-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25893776

RESUMO

The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.


Assuntos
Homeostase , Deficiências de Ferro , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Animais , Bioensaio , Ferritinas/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glucuronidase/metabolismo , Glutationa/metabolismo , Ferro/metabolismo , Micronutrientes/metabolismo , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Oócitos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transporte Proteico , Estresse Fisiológico/genética , Frações Subcelulares/metabolismo , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 109(47): 19166-71, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23132948

RESUMO

Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg(-1) in the grain compared with a mean of 1.73 mg Cd⋅kg(-1) in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide.


Assuntos
Cruzamento , Cádmio/metabolismo , Carbono/química , Genes de Plantas/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Agricultura , Sequência de Bases , Clonagem Molecular , Marcadores Genéticos , Humanos , Íons , Dados de Sequência Molecular , Mutação/genética , Cebolas/citologia , Cebolas/genética , Oryza/efeitos da radiação , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico/efeitos da radiação , Característica Quantitativa Herdável , Sementes/metabolismo , Sementes/efeitos da radiação , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Transformação Genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-25864469

RESUMO

Six months after the explosion of TEPCO's Fukushima Dai-ichi nuclear power plant, radioactive silver ((110m)Ag), was detected in concentrations of 3754 Bq/kg in Nephila clavata (the orb-web spider; Joro-gumo in Japanese) collected at Nimaibashi, Iitate village in Fukushima Prefecture, whereas (110m)Ag in the soil was 43.1 Bq/kg. A survey of 35 faunal species in the terrestrial environment during the 3.5 years after the accident showed that most of Anthropoda had two orders higher (110m)Ag in their tissues than soils, although silver is not an essential element for their life. However, tracing of the activity of (110m)Ag detected in spider Atypus karschi collected regularly at a fixed location showed that it declined much faster than the physical half-life. These results suggest that (110m)Ag was at once biologically concentrated by faunal species, especially Arthropoda, through food chain. The factors affecting the subsequent rapid decline of (110m)Ag concentration in faunal species are discussed.


Assuntos
Acidente Nuclear de Fukushima , Centrais Nucleares , Monitoramento de Radiação , Prata/análise , Aranhas/química , Animais , Fezes , Radioatividade , Radioisótopos , Solo
17.
Hinyokika Kiyo ; 61(2): 61-5, 2015 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-25812595

RESUMO

Extramammary Paget's disease occurring in the female vulva is occasionally associated with invasive disease to urethra and bladder mucosa. For such cases, ensuring adequate surgical margin is essential. Not only adequate removal of tumor, but also urinary diversion is important for patient's quality of life. A 77- year-old woman was treated with excision of vulvar tumor, urethra, vagina, rectum and anus. The determination of excision area was decided according to the result of mapping biopsy including urethra and bladder. Then she received reconstruction of vulva using the gracilis muscle skin flap. We applied a technique of channel formation for intermittent catheterization using the retubularized sigmoid colon based on the Monti principle. The tube was implanted submucosally into the bladder to prevent the reflux of urine. Fifteen days after operation, self-intermittent catheterization was started successfully. Surgical margins were negative in urethra, skin, vagina and rectum. There are no obvious recurrence or metastasis 1 year after surgery.


Assuntos
Colo Sigmoide/cirurgia , Doença de Paget Extramamária/cirurgia , Uretra/patologia , Derivação Urinária/métodos , Neoplasias Vulvares/cirurgia , Idoso , Feminino , Humanos , Invasividade Neoplásica , Doença de Paget Extramamária/patologia , Uretra/cirurgia , Neoplasias Vulvares/patologia
18.
New Phytol ; 201(3): 781-794, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24188410

RESUMO

Although the genes involved in metal homeostasis have been investigated over the past few decades, many genes related to metal homeostasis remain uncharacterized, and a comprehensive analysis of the expression of these genes is required. In the present study, we investigated the spatial gene expression profile of iron (Fe)-deficient and cadmium (Cd)-stressed Oryza sativa (rice) using laser microdissection and microarray analysis. Roots of Fe-deficient and Cd-stressed rice were separated into the vascular bundle, cortex, and epidermis plus exodermis. In addition, vascular bundles from new and old leaves at the lowest node, which are important for metal distribution, were analyzed separately. The spatial expression patterns were distinct in each tissue type. Fe deficiency and Cd stress also had significant effects on the transcriptomes, although these were less pronounced than the spatial effects. Genes encoding transporters involved in metal homeostasis, proteins associated with heavy metal detoxification, and phytohormone-related proteins were comprehensively investigated. Additionally, cis motifs involved in the regulation of these diverse expression changes in various tissue types were predicted. The spatial transcriptomes presented here provide novel insight into the molecular mechanisms of metal homeostasis.


Assuntos
Cádmio/toxicidade , Deficiências de Ferro , Oryza/genética , Oryza/fisiologia , Estresse Fisiológico/genética , Transcriptoma/genética , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Cádmio/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Genes de Plantas , Homeostase/efeitos dos fármacos , Homeostase/genética , Microdissecção e Captura a Laser , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Sideróforos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Biosci Biotechnol Biochem ; 78(10): 1677-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25047240

RESUMO

Iron (Fe) is an essential nutrient in both plants and humans. Fe deficiency on calcareous soil with low Fe availability is a major agricultural problem. Nicotianamine (NA) is one of the Fe chelator in plants, which is involved in metal translocation into seeds, and serves as an antihypertensive substance in humans. In this study, soybean plants overexpressing the barley NA synthase 1 (HvNAS1) gene driven by the constitutive CaMV 35S promoter were produced using Agrobacterium-mediated transformation. The transgenic soybean showed no growth defect and grew normally. The NA content of transgenic soybean seeds was up to four-fold greater than that of non-transgenic (NT) soybean seeds. The level of HvNAS1 expression was positively correlated with the amount of NA, and a high concentration of NA was maintained in the seeds in succeeding generations. The Fe concentration was approximately two-fold greater in transgenic soybean seeds than in NT soybean seeds. Furthermore, the transgenic soybeans showed tolerance to low Fe availability in calcareous soil. Our results suggested that increasing the NA content in soybean seeds by the overexpression of HvNAS1 offers potential benefits for both human health and agricultural productivity.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Carbonato de Cálcio/análise , Glycine max/genética , Glycine max/metabolismo , Ferro/metabolismo , Solo/química , Agrobacterium/genética , Alquil e Aril Transferases/genética , Ácido Azetidinocarboxílico/metabolismo , Hordeum/genética , Ferro/análise , Plantas Geneticamente Modificadas , Sementes/genética , Glycine max/fisiologia , Transformação Genética , Zinco/metabolismo
20.
Int Cancer Conf J ; 13(1): 6-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38187173

RESUMO

We here present a patient with a sarcomatoid renal cell carcinoma complicated by inferior vena cava tumor thrombus that we treated with nivolumab plus ipilimumab. This resulted in shrinkage of the tumor, enabling complete resection by robot-assisted laparoscopic radical nephrectomy. The patient is still alive with no evidence of recurrence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA