Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Small ; 19(36): e2208252, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37162462

RESUMO

All-solid-state lithium-metal batteries offer higher energy density and safety than lithium-ion batteries, but their practical applications have been pushed back by the sluggish Li+ transport, unstable electrolyte/electrode interface, and/or difficult processing of their solid-state electrolytes. Li+ -conducting composite polymer electrolytes (CPEs) consisting of sub-micron particles of an oxide solid-state electrolyte (OSSE) dispersed in a solid, flexible polymer electrolyte (SPE) have shown promises to alleviate the low Li+ conductivity of SPE, and the high rigidity and large interfacial impedance of OSSEs. Solution casting has been by far the most widely used procedure for the preparation of CPEs in research laboratories; however, this method imposes several drawbacks including particle aggregation and settlement during a long-term solvent evaporation step, excessive use of organic solvents, slow production time, and mechanical issues associated with handling of ultra-thin films of CPEs (<50 µm). To address these challenges, an electrophoretic deposition (EPD) method is developed to in situ deposit ultra-thin CPEs on lithium-iron-phosphate (LFP) cathodes within just a few minutes. EPD-prepared CPEs have shown better electrochemical performance in the lithium-metal battery than those CPEs prepared by solution casting due to a better dispersion of OSSE within the SPE matrix and improved CPE contact with LFP cathodes.

2.
Br J Nutr ; : 1-9, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184085

RESUMO

Blood carotenoid concentration measurement is considered the gold standard for fruit and vegetable (F&V) intake estimation; however, this method is invasive and expensive. Recently, skin carotenoid status (SCS) measured by optical sensors has been evaluated as a promising parameter for F&V intake estimation. In this cross-sectional study, we aimed to validate the utility of resonance Raman spectroscopy (RRS)-assessed SCS as a biomarker of F&V intake in Korean adults. We used data from 108 participants aged 20-69 years who completed SCS measurements, blood collection and 3-d dietary recordings. Serum carotenoid concentrations were quantified using HPLC, and dietary carotenoid and F&V intakes were estimated via 3-d dietary records using a carotenoid database for common Korean foods. The correlations of the SCS with serum carotenoid concentrations, dietary carotenoid intake and F&V intake were examined to assess SCS validity. SCS was positively correlated with total serum carotenoid concentration (r = 0·52, 95 % CI = 0·36, 0·64, P < 0·001), serum ß-carotene concentration (r = 0·60, 95 % CI = 0·47, 0·71, P < 0·001), total carotenoid intake (r = 0·20, 95 % CI = 0·01, 0·37, P = 0·04), ß-carotene intake (r = 0·30, 95 % CI = 0·11, 0·46, P = 0·002) and F&V intake (r = 0·40, 95 % CI = 0·23, 0·55, P < 0·001). These results suggest that SCS can be a valid biomarker of F&V intake in Korean adults.

3.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069435

RESUMO

The need for prehospital hemostatic dressings that exert an antibacterial effect is of interest for prolonged field care. Here, we consider a series of antibacterial and zeolite formulary treatment approaches applied to a cotton-based dressing. The design of the fabric formulations was based on the hemostatic dressing TACGauze with zeolite Y incorporated as a procoagulant with calcium and pectin to facilitate fiber adherence utilizing silver nanoparticles, and cellulose-crosslinked ascorbic acid to confer antibacterial activity. Infra-red spectra were employed to characterize the chemical modifications on the dressings. Contact angle measurements were employed to document the surface hydrophobicity of the cotton fabric which plays a role in the contact activation of the coagulation cascade. Ammonium Y zeolite-treated dressings initiated fibrin equal to the accepted standard hemorrhage control dressing and showed similar improvement with antibacterial finishes. The antibacterial activity of cotton-based technology utilizing both citrate-linked ascorbate-cellulose conjugate analogs and silver nanoparticle-embedded cotton fibers was observed against Staphylococcus aureus and Klebsiella pneumoniae at a level of 99.99 percent in the AATCC 100 assay. The hydrogen peroxide levels of the ascorbic acid-based fabrics, measured over a time period from zero up to forty-eight hours, were in line with the antibacterial activities.


Assuntos
Hemostáticos , Nanopartículas Metálicas , Zeolitas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Zeolitas/farmacologia , Hemostáticos/farmacologia , Ácido Ascórbico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fibra de Algodão , Bandagens , Celulose/química
4.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838586

RESUMO

Cottonseed is a natural product of cotton (Gossypium spp.) crops. This work evaluated the oxidative stability of cottonseed butters through accelerated autoxidation by storage at 60 °C for 25 days. Three oxidative stability parameter values (peroxide value, p-anisidine value, and total oxidation value) were monitored over the storage time. These chemical measurements revealed that the storage stability of the butter products was dominated by primary oxidation of lipid (oil) components, while the secondary oxidation levels were relatively unchanged over the storage time. An analysis of the tocopherols (natural oxidants in cottonseed) suggested not only the protection function of the molecules against oxidation of the cottonseed butter during storage, but also the dynamic mechanism against the primary oxidation of lipid components. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) data confirmed no changes in the major C functional groups of cottonseed butters over the storage time. On the other hand, characteristic minor peaks of conjugated dienes and trienes related to lipid oxidation were impacted by the accelerated storage. As each day of accelerated oxidation at 60 °C is equivalent to 16 days of storage at 20 °C, observations in this work should have reflected the oxidative stability behaviors of the cottonseed butters after about 13 months of shelf storage under ambient storage conditions. Thus, these data that were collected under the accelerated oxidation testing would be useful not only to create a better understanding of the autooxidation mechanism of lipid molecules in cottonseed butters, but also in developing or recommending appropriate storage conditions for cottonseed end products to prevent them from quality degradation.


Assuntos
Manteiga , Óleo de Sementes de Algodão , Óleo de Sementes de Algodão/química , Oxirredução , Antioxidantes/química , Estresse Oxidativo
5.
Molecules ; 28(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241921

RESUMO

Cottonseed is the second major product of cotton (Gossypium spp.) crops after fiber. Thus, the characterization and valorization of cottonseed are important parts of cotton utilization research. In this work, the nonpolar and polar fractions of glanded (Gd) cottonseed were sequentially extracted by 100% hexane and 80% ethanol aqueous solutions and subjected to 13C and 1H nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), respectively. The nonpolar (crude oil) extracts showed the characteristic NMR peak features of edible plant oils with the absence of ω-3 linolenic acid. Quantitative analysis revealed the percentage of polyunsaturated, monounsaturated, and saturated fatty acids as 48.7%, 16.9%, and 34.4%, respectively. Both general unsaturated fatty acid features and some specific olefinic compounds (e.g., oleic, linolenic, and gondonic acids) were found in the nonpolar fraction. In the polar extracts, FT-ICR MS detected 1673 formulas, with approximately 1/3 being potential phenolic compounds. Both the total and phenolic formulas fell mainly in the categories of lipid, peptide-like, carbohydrate, and lignin. A literature search and comparison further identifies some of these formulas as potential bioactive compounds. For example, one compound [2,5-dihydroxy-N'-(2,3,4-trihydroxybenzylidene) benzohydrazide] identified in the polar extracts is likely responsible for the anticancer function observed when used on human breast cancer cell lines. The chemical profile of the polar extracts provides a formulary for the exploration of bioactive component candidates derived from cottonseed for nutritive, health, and medical applications.


Assuntos
Óleo de Sementes de Algodão , Gossypium , Humanos , Óleo de Sementes de Algodão/química , Espectrometria de Massas , Ácidos Graxos , Extratos Vegetais
6.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770717

RESUMO

In this study, a simple and effective way to produce washable antimicrobial wipes was developed based on the unique ability of raw cotton fiber to produce silver nanoparticles. A nanocomposite substructure of silver nanoparticles (25 ± 3 nm) was generated in raw cotton fiber without reducing and stabilizing agents. This nanocomposite raw cotton fiber (2100 ± 58 mg/kg in the concentration of silver) was blended in the fabrication of nonwoven wipes. Blending small amounts in the wipes-0.5% for antimicrobial properties and 1% for wipe efficacy-reduced the viability of S. aureus and P. aeruginosa by 99.9%. The wipes, fabricated from a blend of 2% nanocomposite raw cotton fiber, maintained their antibacterial activities after 30 simulated laundering cycles. The washed wipes exhibited bacterial reductions greater than 98% for both Gram-positive and Gram-negative bacteria.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Fibra de Algodão , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Staphylococcus aureus , Nanopartículas Metálicas/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Nanocompostos/química
7.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431816

RESUMO

With increasingly frequent highly infectious global pandemics, the textile industry has responded by developing commercial fabric products by incorporating antibacterial metal oxide nanoparticles, particularly copper oxide in cleaning products and personal care items including antimicrobial wipes, hospital gowns and masks. Current methods use a surface adsorption method to functionalize nanomaterials to fibers. However, this results in poor durability and decreased antimicrobial activity after consecutive launderings. In this study, cuprous oxide nanoparticles with nanoflower morphology (Cu2O nanoflowers) are synthesized in situ within the cotton fiber under mild conditions and without added chemical reducing agents from a copper (II) precursor with an average maximal Feret diameter of 72.0 ± 51.8 nm and concentration of 17,489 ± 15 mg/kg. Analysis of the Cu2O NF-infused cotton fiber cross-section by transmission electron microscopy (TEM) confirmed the internal formation, and X-ray photoelectron spectroscopy (XPS) confirmed the copper (I) reduced oxidation state. An exponential correlation (R2 = 0.9979) between the UV-vis surface plasmon resonance (SPR) intensity at 320 nm of the Cu2O NFs and the concentration of copper in cotton was determined. The laundering durability of the Cu2O NF-cotton fabric was investigated, and the superior nanoparticle-leach resistance was observed, with the fabrics releasing only 19% of copper after 50 home laundering cycles. The internally immobilized Cu2O NFs within the cotton fiber exhibited continuing antibacterial activity (≥99.995%) against K. pneumoniae, E. coli and S. aureus), complete antifungal activity (100%) against A. niger and antiviral activity (≥90%) against Human coronavirus, strain 229E, even after 50 laundering cycles.


Assuntos
Cobre , Nanopartículas Metálicas , Humanos , Cobre/química , Celulose/farmacologia , Antifúngicos , Staphylococcus aureus , Escherichia coli , Antivirais , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Klebsiella pneumoniae , Óxidos
8.
Molecules ; 27(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011547

RESUMO

Common "glanded" (Gd) cottonseeds contain the toxic compound gossypol that restricts human consumption of the derived products. The "glandless" (Gl) cottonseeds of a new cotton variety, in contrast, show a trace gossypol content, indicating the great potential of cottonseed for agro-food applications. This work comparatively evaluated the chemical composition and thermogravimetric behaviors of the two types of cottonseed kernels. In contrast to the high gossypol content (3.75 g kg-1) observed in Gd kernels, the gossypol level detected in Gl kernels was only 0.06 g kg-1, meeting the FDA's criteria as human food. While the gossypol gland dots in Gd kernels were visually observed, scanning electron microcopy was not able to distinguish the microstructural difference between ground Gd and Gl samples. Chemical analysis and Fourier transform infrared (FTIR) spectroscopy showed that Gl kernels and Gd kernels had similar chemical components and mineral contents, but the former was slightly higher in protein, starch, and phosphorus contents. Thermogravimetric (TG) processes of both kernels and their residues after hexane and ethanol extraction were based on three stages of drying, de-volatilization, and char formation. TG-FTIR analysis revealed apparent spectral differences between Gd and Gl samples, as well as between raw and extracted cottonseed kernel samples, indicating that some components in Gd kernels were more susceptible to thermal decomposition than Gl kernels. The TG and TG-FTIR observations suggested that the Gl kernels could be heat treated (e.g., frying and roasting) at an optimal temperature of 140-150 °C for food applications. On the other hand, optimal pyrolysis temperatures would be much higher (350-500 °C) for Gd cottonseed and its defatted residues for non-food bio-oil and biochar production. The findings from this research enhance the potential utilization of Gd and Gl cottonseed kernels for food applications.


Assuntos
Gossypium/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Sementes/química , Gossipol/análise , Gossipol/química , Humanos , Extratos Vegetais/análise , Extratos Vegetais/química , Sementes/ultraestrutura , Análise Espectral , Termogravimetria
9.
J Acoust Soc Am ; 146(2): 1110, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472556

RESUMO

The relation between high-frequency broadband acoustic signal variability and two types of internal waves (short-period internal solitary waves; ISWs, and semidiurnal internal tides; ITs) is investigated using data collected during the shallow-water acoustic variability experiment 2015 in the northeastern East China Sea. In this flat (∼100 m depth) region, an underwater sound channel with sound speed profile (SSP) variability observed during the experiment significantly affects the acoustic variability induced by the ISW, and the arrival structure of the channel impulse response (CIR) modeled by ray tracing. To model the range-dependent SSP due to ISW, the location and characteristics of the mode-1 ISW of wavelength (0.5-1 km) are estimated and verified based on the two-layer Korteweq-de Vries theory and by analyzing the observed temperature fluctuations. It is found from comparison between the measured and modeled CIRs that the ISW scatters the arrival structures of refracted rays. Meanwhile, semidiurnal ITs change the channel size modeled as range-independent considering the wavelengths (15-40 km) longer than the model range (3 km). Higher centroid of acoustic arrival time is found with lower isotherm depressions owing to the multimode ITs, indicative of acoustic energy focusing at the lower channel region.

10.
Korean J Parasitol ; 56(3): 305-308, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29996637

RESUMO

This study was aimed to disclose the prevalence rate of tick-borne pathogens from ticks collected from cattle and wild animals in Tanzania in 2012. Ticks were collected from slaughtered cattle and dead wild animals from November 5 to December 23, 2012 and identified. PCR for detecting Anaplasmataceae, Piroplamidae, Rickettsiaceae, Borrelia spp., and Coxiella spp. were done. Among those tested, Rickettsiaceae, Piroplasmidae, and Anaplasmataceae, were detected in ticks from the 2 regions. Rickettsiaceae represented the major tick-borne pathogens of the 2 regions. Ticks from animals in Maswa were associated with a higher pathogen detection rate compared to that in ticks from Iringa. In addition, a higher pathogen detection rate was observed in ticks infesting cattle than in ticks infesting wild animals. All examined ticks of the genus Amblyomma were infected with diverse pathogens. Ticks of the genera Rhipicephalus and Hyalomma were infected with 1 or 2 pathogens. Collectively, this study provides important information regarding differences in pathogen status among various regions, hosts, and tick species in Tanzania. Results in this study will affect the programs to prevent tick-borne diseases (TBD) of humans and livestock in Tanzania.


Assuntos
Anaplasma/patogenicidade , Animais Selvagens/parasitologia , Borrelia/patogenicidade , Doenças dos Bovinos/etiologia , Bovinos/parasitologia , Coxiella/patogenicidade , Piroplasmida/patogenicidade , Rickettsiaceae/patogenicidade , Doenças Transmitidas por Carrapatos/etiologia , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos/microbiologia , Carrapatos/parasitologia , Anaplasma/isolamento & purificação , Animais , Borrelia/isolamento & purificação , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/parasitologia , Coxiella/isolamento & purificação , Piroplasmida/isolamento & purificação , Prevalência , Rickettsiaceae/isolamento & purificação , Tanzânia/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/parasitologia , Fatores de Tempo
12.
Korean J Parasitol ; 52(5): 565-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25352709

RESUMO

Ticks and tick-borne diseases are important in human and livestock health worldwide. In November 2012, ixodid ticks were collected and identified morphologically from cattle and wild animals in the Maswa district and Iringa urban, Tanzania. Amblyomma gemma, A. lepidum, and A. variegatum were identified from Maswa cattle, and A. variegatum was the predominant species. A. marmoreum, Hyalomma impeltatum, and Rhipicephalus pulchellus were identified from Iringa cattle in addition to the above 3 Amblyomma species, and A. gemma was the most abundant species. Total 4 Amblyomma and 6 Rhipicephalus species were identified from wild animals of the 2 areas. A. lepidum was predominant in Maswa buffaloes, whereas A. gemma was predominant in Iringa buffaloes. Overall, A. variegatum in cattle was predominant in the Maswa district and A. gemma was predominant in Iringa, Tanzania.


Assuntos
Doenças dos Bovinos/parasitologia , Ixodidae , Infestações por Carrapato/veterinária , Animais , Animais Selvagens , Bovinos , Doenças dos Bovinos/epidemiologia , Tanzânia/epidemiologia , Infestações por Carrapato/epidemiologia
13.
Nat Commun ; 15(1): 2946, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605000

RESUMO

The Pine Island and Thwaites Ice Shelves (PIIS/TIS) in the Amundsen Sea are melting rapidly and impacting global sea levels. The thermocline depth (TD) variability, the interface between cold Winter Water and warm modified Circumpolar Deep Water (mCDW), at the PIIS/TIS front strongly correlates with basal melt rates, but the drivers of its interannual variability remain uncertain. Here, using an ocean model, we propose that the strength of the eastern Amundsen Sea on-shelf circulation primarily controls TD variability and consequent PIIS/TIS melt rates. The TD variability occurs because the on-shelf circulation meanders following the submarine glacial trough, creating vertical velocity through bottom Ekman dynamics. We suggest that a strong or weak ocean circulation, possibly linked to remote winds in the Bellingshausen Sea, generates corresponding changes in bottom Ekman convergence, which modulates mCDW upwelling and TD variability. We show that interannual variability of off-shelf zonal winds has a minor effect on ocean heat intrusion into PIIS/TIS cavities, contrary to the widely accepted concept.

14.
Front Plant Sci ; 15: 1372232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545383

RESUMO

Naturally-colored brown cotton (NBC) fiber is an environmentally friendly raw source of fiber for textile applications. The fiber of some NBC cultivars exhibits flame-retardant properties, which can be used in textiles that require flame resistance. Proanthocyanidins or their derivatives are responsible for the brown pigment in NBC; however, how flame retardancy is related to pigmentation in NBC is poorly understood. To gain insight into brown pigment biosynthesis, we conducted comparative transcripts and metabolites profiling analysis of developing cotton fibers between the brown (MC-BL) and white (MC-WL) cotton near-isogenic lines (NILs), genetically different only in the Lc1 locus. In this study, mass spectrometry was used to detect metabolites in BL and WL developing fibers at 8, 12, 16, 20, 24, 36, and 40 days post anthesis (DPA) and mature fibers. Transcripts analysis was performed at two critical fiber developmental points, 8 DPA (fiber elongation) and 20 DPA (secondary cell wall deposition). We found 5836 (ESI MS positive mode) and 4541 (ESI MS negative mode) metabolites significantly different accumulated between BL and WL. Among them, 142 were known non-redundant metabolites, including organic acids, amino acids, and derivatives of the phenylpropanoid pathway. Transcript analysis determined 1691 (8 DPA) and 5073 (20 DPA) differentially expressed genes (DEGs) between BL and WL, with the majority of DEGs down-regulated at 20 DPA. Organic acids of the citric acid cycle were induced, while most of the detected amino acids were reduced in the MC-BL line. Both cis- and trans-stereoisomers of flavan-3-ols were detected in developing MC-WL and MC-BL fibers; however, the gallocatechin and catechin accumulated multiple times higher. Gas chromatography-mass spectrometry (GC-MS) analysis of fatty acids determined that palmitic acid long-chain alcohols were the main constituents of waxes of mature fibers. Energy-dispersive X-ray spectrometry (EDS) analysis of mature fibers revealed that potassium accumulated three times greater in MC-BL than in MC-WL mature fibers. This study provides novel insights into the biosynthesis of pigments and its association with flame retardancy in NBC fibers.

15.
ACS Omega ; 9(11): 13017-13027, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524471

RESUMO

Engineering fibers with nanomaterials is an effective way to modify their properties and responses to external stimuli. In this study, we doped cotton fibers with silver nanoparticles, both on the surface (126 ± 17 nm) and throughout the fiber cross section (18 ± 4 nm), and examined the resistance to soil biodegradation. A reagent-free one-pot treatment of a raw cotton fabric, where noncellulosic constituents of the raw cotton fiber and starch sizing served as reducing agents, produced silver nanoparticles with a total concentration of 11 g/kg. In a soil burial study spanning 16 weeks, untreated cotton underwent a sequential degradation process-fibrillation, fractionation, and merging-corresponding to the length of the soil burial period, whereas treated cotton did not exhibit significant degradation. The remarkable biodegradation resistance of the treated cotton was attributed to the antimicrobial properties of silver nanoparticles, as demonstrated through a test involving the soil-borne fungus Aspergillus flavus. The nonlinear loss behavior of silver from the treated cotton suggests that nanoparticle depletion in the soil depends on their location, with interior nanoparticles proving durable against environmental exposure.

16.
ACS Appl Bio Mater ; 7(3): 1490-1500, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38377436

RESUMO

Inflammatory disease biomarker detection has become a high priority in point-of-care diagnostic research in relation to chronic wounds, with a variety of sensor-based designs becoming available. Herein, two primary aspects of biosensor design are examined: (1) assessment of a cellulose nanofiber (CNF) matrix derived from cotton ginning byproducts as a sensor transducer surface; and (2) assessment of the relation of spacer length and morphology between the CNF cellulose backbone and peptide fluorophore as a function of sensor activity for porcine pancreatic and human neutrophil elastases. X-ray crystallography, specific surface area, and pore size analyses confirmed the suitability of CNF as a matrix for wound care diagnostics. Based upon the normalized degree of substitution, a pegylated-linker connecting CNF transducer substrate to peptide fluorophore showed the greatest fluorescence response, compared to short- and long-chain alkylated linkers.


Assuntos
Técnicas Biossensoriais , Nanofibras , Animais , Suínos , Humanos , Celulose/química , Peptídeos/química
17.
Food Chem ; 403: 134404, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182850

RESUMO

Roasting is a technological process in some food applications of agricultural products. To investigate the composition changes of the extractable functional/bioactive components of cottonseed, in this work, glandless cottonseed kernels were roasted at 110, 120, 140 and 150 °C for 15 min, respectively. The UV/vis data of the 80 % ethanol extracts found that roasting increased the level of phenolic compounds. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry of the extracts identified about 44 % to 55 % of total formulas as potential phenolic compounds. Roasting (up to 140 °C) mainly increased carbohydrate-, lignin-, and tannin-like compounds while lipid-like compounds decreased. The compositional changes at 150 °C were less than those at 140 °C, attributed to devolatilization at the higher temperature. The information of chemical profiling of cottonseed and the roasting impact would be greatly useful in enhanced utilization of cottonseed as nutrient and functional foods or food supplements.


Assuntos
Óleo de Sementes de Algodão , Ciclotrons , Óleo de Sementes de Algodão/química , Análise de Fourier , Espectrometria de Massas/métodos , Lignina , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Foods ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002215

RESUMO

Plant-based butters from nuts and seeds have steadily increased in consumer popularity due to their unique flavors and healthy nutritional properties. Oil content is a critical parameter to measure the proper consistency and stability of plant butter and spread products. Previous work has shown that glandless cottonseed can be used to formulate cottonseed butter products to increase the values of cottonseed. As part of the efforts made in the valorization of cottonseed, this work evaluated the effects of oil content on the microstructural and textural properties of cottonseed butter/spread products. While the oil content in the raw cottonseed kernels was 35% of the kernel biomass, additional cottonseed oil was added to make cottonseed butter products with six oil content levels (i.e., 36, 43, 47, 50, 53, and 57%). The values of three textural parameters, firmness, spreadability, and adhesiveness, decreased rapidly in an exponential mode with the increasing oil content. The particle size population in these butter samples was characterized by similar trimodal distribution, with the majority in the middle mode region with particle sizes around 4.5-10 µm. Higher oil content decreased the butter particle size slightly but increased oil separation during storage. The oxidation stability with a rapid oxygen measurement was gradually reduced from 250 min with 36% oil to 65 min with 57% oil. The results of this work provide information for the further optimization of formulation parameters of cottonseed butter products.

19.
Adv Healthc Mater ; 12(22): e2300076, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37221957

RESUMO

The increasing demand for cost-efficient and user-friendly wearable electronic devices has led to the development of stretchable electronics that are both cost-effective and capable of maintaining sustained adhesion and electrical performance under duress. This study reports on a novel physically crosslinked poly(vinyl alcohol) (PVA)-based hydrogel that serves as a transparent, strain-sensing skin adhesive for motion monitoring. By incorporating Zn2+ into the ice-templated PVA gel, a densified amorphous structure is observed through optical and scanning electron microscopy, and it is found that the material can stretch up to 800% strain according to tensile tests. Fabrication in a binary glycerol:water solvent results in electrical resistance in the kΩ range, a gauge factor of 0.84, and ionic conductivity on the scale of 10-4 S cm-1 , making it a potentially low-cost candidate for a stretchable electronic material. This study characterizes the relationship between improved electrical performance and polymer-polymer interactions through spectroscopic techniques, which play a role in the transport of ionic species through the material.


Assuntos
Álcool de Polivinil , Dispositivos Eletrônicos Vestíveis , Polímeros , Movimento (Física) , Condutividade Elétrica , Hidrogéis/química , Íons
20.
ACS Omega ; 8(34): 31281-31292, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663495

RESUMO

Cotton gin waste presents a significant challenge in the cotton ginning industry due to its abundant generation and limited disposal options. In this study, we explored the potential of cotton gin waste as a naturally occurring source material that can synthesize and host silver nanoparticles. The noncellulosic constituents of cotton gin waste served as effective reducing agents, facilitating the conversion of silver ions into silver atoms, while its porous structure acted as a microreactor, enabling controlled particle growth. A simple heat treatment of cotton gin waste powder in an aqueous silver precursor solution actualized the in situ synthesis of silver nanoparticles, without the need for additional chemical agents. Remarkably, a high concentration of silver nanoparticles (14.7%) with an average diameter of approximately 27 nm was produced throughout the entire volume of cotton gin waste. Electron microscopic images of cross-sectioned cotton gin waste confirm the internal formation of nanoparticles. Rietveld refinement analysis of X-ray diffraction patterns showed that the majority of the nanoparticles possess a cubic silver crystal structure. By leveraging the well-known biocidal properties of silver nanoparticles, the resulting silver nanoparticle-filled cotton gin waste holds promise for novel antimicrobial and antifungal material applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA