Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
EMBO J ; 40(14): e106111, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018220

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved diverse cellular processes in response to the multiple stresses it encounters within the infected host. We explored available TnSeq datasets to identify transcription factors (TFs) that are essential for Mtb survival inside the host. The analysis identified a single TF, Rv1332 (AosR), conserved across actinomycetes with a so-far uncharacterized function. AosR mitigates phagocyte-derived oxidative and nitrosative stress, thus promoting mycobacterial growth in the murine lungs and spleen. Oxidative stress induces formation of a single intrasubunit disulphide bond in AosR, which in turn facilitates AosR interaction with an extracytoplasmic-function sigma factor, SigH. This leads to the specific upregulation of the CysM-dependent non-canonical cysteine biosynthesis pathway through an auxiliary intragenic stress-responsive promoter, an axis critical in detoxifying host-derived oxidative and nitrosative radicals. Failure to upregulate AosR-dependent cysteine biosynthesis during the redox stress causes differential expression of 6% of Mtb genes. Our study shows that the AosR-SigH pathway is critical for detoxifying host-derived oxidative and nitrosative radicals to enhance Mtb survival in the hostile intracellular environment.


Assuntos
Actinobacteria/genética , Homeostase/genética , Mycobacterium tuberculosis/genética , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Fator sigma/genética , Transcrição Gênica/genética
2.
J Biol Chem ; 299(3): 102933, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690275

RESUMO

SigA (σA) is an essential protein and the primary sigma factor in Mycobacterium tuberculosis (Mtb). However, due to the absence of genetic tools, our understanding of the role and regulation of σA activity and its molecular attributes that help modulate Mtb survival is scant. Here, we generated a conditional gene replacement of σA in Mtb and showed that its depletion results in a severe survival defect in vitro, ex vivo, and in vivo in a murine infection model. Our RNA-seq analysis suggests that σA either directly or indirectly regulates ∼57% of the Mtb transcriptome, including ∼28% of essential genes. Surprisingly, we note that despite having ∼64% similarity with σA, overexpression of the primary-like σ factor SigB (σB) fails to compensate for the absence of σA, suggesting minimal functional redundancy. RNA-seq analysis of the Mtb σB deletion mutant revealed that 433 genes are regulated by σB, of which 283 overlap with the σA transcriptome. Additionally, surface plasmon resonance, in vitro transcription, and functional complementation experiments reveal that σA residues between 132-179 that are disordered and missing from all experimentally determined σA-RNAP structural models are imperative for σA function. Moreover, phosphorylation of σA in the intrinsically disordered N-terminal region plays a regulatory role in modulating its activity. Collectively, these observations and analysis provide a rationale for the centrality of σA for the survival and pathogenicity of this bacillus.


Assuntos
Proteínas de Bactérias , Viabilidade Microbiana , Mycobacterium tuberculosis , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Animais , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Transcriptoma , Tuberculose/microbiologia , Deleção de Sequência , Viabilidade Microbiana/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
3.
J Biol Chem ; 299(12): 105364, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865319

RESUMO

Nucleoid-associated proteins (NAPs) regulate multiple cellular processes such as gene expression, virulence, and dormancy throughout bacterial species. NAPs help in the survival and adaptation of Mycobacterium tuberculosis (Mtb) within the host. Fourteen NAPs have been identified in Escherichia coli; however, only seven NAPs are documented in Mtb. Given its complex lifestyle, it is reasonable to assume that Mtb would encode for more NAPs. Using bioinformatics tools and biochemical experiments, we have identified the heparin-binding hemagglutinin (HbhA) protein of Mtb as a novel sequence-independent DNA-binding protein which has previously been characterized as an adhesion molecule required for extrapulmonary dissemination. Deleting the carboxy-terminal domain of HbhA resulted in a complete loss of its DNA-binding activity. Atomic force microscopy showed HbhA-mediated architectural modulations in the DNA, which may play a regulatory role in transcription and genome organization. Our results showed that HbhA colocalizes with the nucleoid region of Mtb. Transcriptomics analyses of a hbhA KO strain revealed that it regulates the expression of ∼36% of total and ∼29% of essential genes. Deletion of hbhA resulted in the upregulation of ∼73% of all differentially expressed genes, belonging to multiple pathways suggesting it to be a global repressor. The results show that HbhA is a nonessential NAP regulating gene expression globally and acting as a plausible transcriptional repressor.


Assuntos
Proteínas de Bactérias , Hemaglutininas , Mycobacterium tuberculosis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/química , DNA/metabolismo , Hemaglutininas/genética , Hemaglutininas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Deleção de Genes , Proteínas de Ligação a DNA/genética , Domínios Proteicos/genética , Microscopia de Força Atômica
4.
PLoS Pathog ; 17(3): e1009452, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33740020

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host's dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets.


Assuntos
Adaptação Fisiológica/genética , Reparo do DNA/fisiologia , Especificidade de Hospedeiro/genética , Mycobacterium tuberculosis/genética , Animais , Cobaias , Camundongos
5.
Antimicrob Agents Chemother ; 66(3): e0177321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156855

RESUMO

Applying antibiotics to susceptible bacterial cultures generates a minor population of persisters that remain susceptible to antibiotics but can endure them for extended periods. Recent reports suggest that antibiotic persisters (APs) of mycobacteria experience oxidative stress and develop resistance upon treatment with lethal doses of ciprofloxacin or rifampicin. However, the mechanisms driving the de novo emergence of resistance remained unclear. Here, we show that mycobacterial APs activate the SOS response, resulting in the upregulation of the error-prone DNA polymerase DnaE2. The sustained expression of dnaE2 in APs led to mutagenesis across the genome and resulted in the rapid evolution of resistance to antibiotics. Inhibition of RecA by suramin, an anti-Trypanosoma drug, reduced the rate of conversion of persisters to resistors in a diverse group of bacteria. Our study highlights suramin's novel application as a broad-spectrum agent in combating the development of drug resistance.


Assuntos
Farmacorresistência Bacteriana , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Mycobacterium tuberculosis/genética , Rifampina/farmacologia
6.
Biochem J ; 478(11): 2081-2099, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955473

RESUMO

N-acetyl glucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme involved in the biosynthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a critical precursor for the synthesis of peptidoglycan and other cell wall components. The absence of a homolog in eukaryotes makes GlmU an attractive target for therapeutic intervention. Mycobacterium tuberculosis GlmU (GlmUMt) has features, such as a C-terminal extension, that are not present in GlmUorthologs from other bacteria. Here, we set out to determine the uniqueness of GlmUMt by performing in vivo complementation experiments using RvΔglmU mutant. We find that any deletion of the carboxy-terminal extension region of GlmUMt abolishes its ability to complement the function of GlmUMt. Results show orthologs of GlmU, including its closest ortholog, from Mycobacterium smegmatis, cannot complement the function of GlmUMt. Furthermore, the co-expression of GlmUMt domain deletion mutants with either acetyl or uridyltransferase activities failed to rescue the function. However, co-expression of GlmUMt point mutants with either acetyl or uridyltransferase activities successfully restored the biological function of GlmUMt, likely due to the formation of heterotrimers. Based on the interactome experiments, we speculate that GlmUMt participates in unique interactions essential for its in vivo function.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Conformação Proteica , Domínios Proteicos , UDPglucose-Hexose-1-Fosfato Uridiltransferase/química , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética
7.
J Infect Dis ; 224(8): 1383-1393, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33580239

RESUMO

Attenuated intracellular survival of Mycobacterium tuberculosis (Mtb) secretory gene mutants exemplifies their role as virulence factors. Mtb peptidyl prolyl isomerase A (PPiA) assists in protein folding through cis/trans isomerization of prolyl bonds. Here, we show that PPiA abets Mtb survival and aids in disease progression by exploiting host-associated factors. While the deletion of PPiA has no discernable effect on bacillary survival in a murine infection model, it compromises the formation of granuloma-like lesions and promotes host cell death through ferroptosis. Overexpression of PPiA enhances the bacillary load and exacerbates pathology in mice lungs. Importantly, PPiA interacts with the integrin α5ß1 receptor through a conserved surface-exposed RGD motif. The secretion of PPiA as well as interaction with integrin contributes to disease progression by upregulating multiple host matrix metalloproteinases. Collectively, we identified a novel nonchaperone role of PPiA that is critical in facilitating host-pathogen interaction and ensuing disease progression.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/enzimologia , Peptidilprolil Isomerase/metabolismo , Animais , Progressão da Doença , Integrinas , Camundongos
8.
Artigo em Inglês | MEDLINE | ID: mdl-33468473

RESUMO

Eradication of tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has been a challenge due to its uncanny ability to survive in a dormant state inside host granulomas for decades. Mtb rewires its metabolic and redox regulatory networks to survive in the hostile hypoxic and nutrient-limiting environment, facilitating the formation of drug-tolerant persisters. Previously, we showed that protein kinase G (PknG), a virulence factor required for lysosomal escape, aids in metabolic adaptation, thereby promoting the survival of nonreplicating mycobacteria. Here, we sought to investigate the therapeutic potential of PknG against latent mycobacterium. We show that inhibition of PknG by AX20017 reduces mycobacterial survival in in vitro latency models such as hypoxia, persisters, and nutrient starvation. Targeting PknG enhances the bactericidal activity of the frontline anti-TB drugs in peritoneal macrophages. Deletion of pknG resulted in 5- to 15-fold-reduced survival of Mtb in chronically infected mice treated with anti-TB drugs. Importantly, in the Cornell mouse model of latent TB, the deletion of pknG drastically attenuated Mtb's ability to resuscitate after antibiotic treatment compared with wild-type and complemented strains. This is the first study to investigate the sterilizing activity of pknG deletion and inhibition for adjunct therapy against latent TB in a preclinical model. Collectively, these results suggest that PknG may be a promising drug target for adjunct therapy to shorten the treatment duration and reduce disease relapse.


Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Tuberculose Latente/tratamento farmacológico , Camundongos , Mycobacterium tuberculosis/genética , Temefós , Tuberculose/tratamento farmacológico
9.
J Immunol ; 203(5): 1218-1229, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31375544

RESUMO

Mycobacterium tuberculosis employs defense mechanisms to protect itself from reactive oxygen species (ROS)-mediated cytotoxicity inside macrophages. In the current study, we found that a secretory protein of M. tuberculosis PPE2 disrupted the assembly of NADPH oxidase complex. PPE2 inhibited NADPH oxidase-mediated ROS generation in RAW 264.7 macrophages and peritoneal macrophages from BALB/c mice. PPE2 interacted with the cytosolic subunit of NADPH oxidase, p67phox, and prevented translocation of p67phox and p47phox to the membrane, resulting in decreased NADPH oxidase activity. Trp236 residue present in the SH3-like domain of PPE2 was found to be critical for its interaction with p67phox Trp236Ala mutant of PPE2 did not interact with p67phox and thereby did not affect ROS generation. M. tuberculosis expressing PPE2 and PPE2-null mutants complemented with PPE2 survived better than PPE2-null mutants in infected RAW 264.7 macrophages. Altogether, this study suggests that PPE2 inhibits NADPH oxidase-mediated ROS production to favor M. tuberculosis survival in macrophages. The findings that M. tuberculosis PPE2 protein is involved in the modulation of oxidative response in macrophages will help us in improving our knowledge of host-pathogen interactions and the application of better therapeutics against tuberculosis.


Assuntos
Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/fisiologia , Fosfoproteínas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Acetato de Tetradecanoilforbol/farmacologia , Domínios de Homologia de src
10.
Biochem J ; 477(23): 4473-4489, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175092

RESUMO

Post-translational modifications such as phosphorylation, nitrosylation, and pupylation modulate multiple cellular processes in Mycobacterium tuberculosis. While protein methylation at lysine and arginine residues is widespread in eukaryotes, to date only two methylated proteins in Mtb have been identified. Here, we report the identification of methylation at lysine and/or arginine residues in nine mycobacterial proteins. Among the proteins identified, we chose MtrA, an essential response regulator of a two-component signaling system, which gets methylated on multiple lysine and arginine residues to examine the functional consequences of methylation. While methylation of K207 confers a marginal decrease in the DNA-binding ability of MtrA, methylation of R122 or K204 significantly reduces the interaction with the DNA. Overexpression of S-adenosyl homocysteine hydrolase (SahH), an enzyme that modulates the levels of S-adenosyl methionine in mycobacteria decreases the extent of MtrA methylation. Most importantly, we show that decreased MtrA methylation results in transcriptional activation of mtrA and sahH promoters. Collectively, we identify novel methylated proteins, expand the list of modifications in mycobacteria by adding arginine methylation, and show that methylation regulates MtrA activity. We propose that protein methylation could be a more prevalent modification in mycobacterial proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Metilação , Mycobacterium tuberculosis/genética
11.
J Bacteriol ; 201(12)2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30962357

RESUMO

A hallmark feature of Mycobacterium tuberculosis pathogenesis lies in the ability of the pathogen to survive within macrophages under a stressful environment. Thus, coordinated regulation of stress proteins is critically important for an effective adaptive response of M. tuberculosis, the failure of which results in elevated immune recognition of the tubercle bacilli with reduced survival during chronic infections. Here, we show that virulence regulator PhoP impacts the global regulation of heat shock proteins, which protect M. tuberculosis against stress generated by macrophages during infection. Our results identify that in addition to classical DNA-protein interactions, newly discovered protein-protein interactions control complex mechanisms of expression of heat shock proteins, an essential pathogenic determinant of M. tuberculosis While the C-terminal domain of PhoP binds to its target promoters, the N-terminal domain of the regulator interacts with the C-terminal end of the heat shock repressors. Remarkably, our findings delineate a regulatory pathway which involves three major transcription factors, PhoP, HspR, and HrcA, that control in vivo recruitment of the regulators within the target genes and regulate stress-specific expression of heat shock proteins via protein-protein interactions. The results have implications on the mechanism of regulation of PhoP-dependent stress response in M. tuberculosisIMPORTANCE The regulation of heat shock proteins which protect M. tuberculosis against stress generated by macrophages during infection is poorly understood. In this study, we show that PhoP, a virulence regulator of the tubercle bacilli, controls heat shock-responsive genes, an essential pathogenic determinant of M. tuberculosis Our results unravel that in addition to classical DNA-protein interactions, complex mechanisms of regulation of heat shock-responsive genes occur through multiple protein-protein interactions. Together, these findings delineate a fundamental regulatory pathway where transcription factors PhoP, HspR, and HrcA interact with each other to control stress-specific expression of heat shock proteins.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Humanos , Macrófagos/microbiologia , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Virulência
12.
J Bacteriol ; 201(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30617240

RESUMO

Extracytoplasmic function σ factors that are stress inducible are often sequestered in an inactive complex with a membrane-associated anti-σ factor. Mycobacterium tuberculosis membrane-associated anti-σ factors have a small, stable RNA gene A (ssrA)-like degron for targeted proteolysis. Interaction between the unfoldase, ClpX, and a substrate with an accessible degron initiates energy-dependent proteolysis. Four anti-σ factors with a mutation in the degron provided a set of natural substrates to evaluate the influence of the degron on degradation strength in ClpX-substrate processivity. We note that a point mutation in the degron (X-Ala-Ala) leads to an order-of-magnitude difference in the dwell time of the substrate on ClpX. Differences in ClpX/anti-σ interactions were correlated with changes in unfoldase activities. Green fluorescent protein (GFP) chimeras or polypeptides with a length identical to that of the anti-σ factor degron also demonstrate degron-dependent variation in ClpX activities. We show that degron-dependent ClpX activity leads to differences in anti-σ degradation, thereby regulating the release of free σ from the σ/anti-σ complex. M. tuberculosis ClpX activity thus influences changes in gene expression by modulating the cellular abundance of ECF σ factors.IMPORTANCE The ability of Mycobacterium tuberculosis to quickly adapt to changing environmental stimuli occurs by maintaining protein homeostasis. Extracytoplasmic function (ECF) σ factors play a significant role in coordinating the transcription profile to changes in environmental conditions. Release of the σ factor from the anti-σ is governed by the ClpXP2P1 assembly. M. tuberculosis ECF anti-σ factors have an ssrA-like degron for targeted degradation. A point mutation in the degron leads to differences in ClpX-mediated proteolysis and affects the cellular abundance of ECF σ factors. ClpX activity thus synchronizes changes in gene expression with environmental stimuli affecting M. tuberculosis physiology.


Assuntos
Endopeptidase Clp/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Análise Mutacional de DNA , Mutação Puntual , Proteólise , Proteínas Repressoras/genética
13.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30642988

RESUMO

Bacterial alternative sigma factors are mostly regulated by a partner-switching mechanism. Regulation of the virulence-associated alternative sigma factor SigF of Mycobacterium tuberculosis has been an area of intrigue, with SigF having more predicted regulators than other sigma factors in this organism. Rv1364c is one such predicted regulator, the mechanism of which is confounded by the presence of both anti-sigma factor and anti-sigma factor antagonist functions in a single polypeptide. Using protein binding and phosphorylation assays, we demonstrate that the anti-sigma factor domain of Rv1364c mediates autophosphorylation of its antagonist domain and binds efficiently to SigF. Furthermore, we identified a direct role for the osmosensor serine/threonine kinase PknD in regulating the SigF-Rv1364c interaction, adding to the current understanding about the intersection of these discrete signaling networks. Phosphorylation of SigF also showed functional implications in its DNA binding ability, which may help in activation of the regulon. In M. tuberculosis, osmotic stress-dependent induction of espA, a SigF target involved in maintaining cell wall integrity, is curtailed upon overexpression of Rv1364c, showing its role as an anti-SigF factor. Overexpression of Rv1364c led to induction of another target, pks6, involved in lipid metabolism. This induction was, however, curtailed in the presence of osmotic stress conditions, suggesting modulation of SigF target gene expression via Rv1364c. These data provide evidence that Rv1364c acts an independent SigF regulator that is sensitive to the osmosensory signal, mediating the cross talk of PknD with the SigF regulon.IMPORTANCEMycobacterium tuberculosis, capable of latently infecting the host and causing aggressive tissue damage during active tuberculosis, is endowed with a complex regulatory capacity built of several sigma factors, protein kinases, and phosphatases. These proteins regulate expression of genes that allow the bacteria to adapt to various host-derived stresses, like nutrient starvation, acidic pH, and hypoxia. The cross talk between these systems is not well understood. SigF is one such regulator of gene expression that helps M. tuberculosis to adapt to stresses and imparts virulence. This work provides evidence for its inhibition by the multidomain regulator Rv1364c and activation by the kinase PknD. The coexistence of negative and positive regulators of SigF in pathogenic bacteria reveals an underlying requirement for tight control of virulence factor expression.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Proteína Quinase C/metabolismo , Processamento de Proteína Pós-Traducional , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilação , Ligação Proteica
14.
J Biol Chem ; 293(17): 6497-6516, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29530985

RESUMO

The cell wall of Mycobacterium tuberculosis (Mtb) is a complex structure that protects the pathogen in hostile environments. Peptidoglycan (PG), which helps determine the morphology of the cell envelope, undergoes substantial remodeling under stress. This meshwork of linear chains of sugars, cross-linked through attached peptides, is generated through the sequential action of enzymes termed transglycosylases and transpeptidases. The Mtb genome encodes two classical transglycosylases and four transpeptidases, the functions of which are not fully elucidated. Here, we present work on the yet uncharacterized transpeptidase PbpA and a nonclassical transglycosylase RodA. We elucidate their roles in regulating in vitro growth and in vivo survival of pathogenic mycobacteria. We find that RodA and PbpA are required for regulating cell length, but do not affect mycobacterial growth. Biochemical analyses show PbpA to be a classical transpeptidase, whereas RodA is identified to be a member of an emerging class of noncanonical transglycosylases. Phosphorylation of RodA at Thr-463 modulates its biological function. In a guinea pig infection model, RodA and PbpA are found to be required for both bacterial survival and formation of granuloma structures, thus underscoring the importance of these proteins in mediating mycobacterial virulence in the host. Our results emphasize the fact that whereas redundant enzymes probably compensate for the absence of RodA or PbpA during in vitro growth, the two proteins play critical roles for the survival of the pathogen inside its host.


Assuntos
Proteínas de Bactérias , Glicosiltransferases , Granuloma do Sistema Respiratório , Viabilidade Microbiana , Mycobacterium tuberculosis , Peptidil Transferases , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Genoma Bacteriano , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Granuloma do Sistema Respiratório/enzimologia , Granuloma do Sistema Respiratório/genética , Granuloma do Sistema Respiratório/patologia , Cobaias , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Tuberculose/enzimologia , Tuberculose/genética , Tuberculose/patologia
15.
J Biol Chem ; 293(32): 12331-12349, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29903917

RESUMO

Identifying and characterizing the individual contributors to bacterial cellular elongation and division will improve our understanding of their impact on cell growth and division. Here, we delineated the role of ftsQ, a terminal gene of the highly conserved division cell wall (dcw) operon, in growth, survival, and cell length maintenance in the human pathogen Mycobacterium tuberculosis (Mtb). We found that FtsQ overexpression significantly increases the cell length and number of multiseptate cells. FtsQ depletion in Mtb resulted in cells that were shorter than WT cells during the initial growth stages (4 days after FtsQ depletion) but were longer than WT cells at later stages (10 days after FtsQ depletion) and compromised the survival in vitro and in differentiated THP1 macrophages. Overexpression of N- and C-terminal FtsQ regions altered the cell length, and the C-terminal domain alone complemented the FtsQ depletion phenotype. MS analyses suggested robust FtsQ phosphorylation on Thr-24, and although phosphoablative and -mimetic mutants rescued the FtsQ depletion-associated cell viability defects, they failed to complement the cell length defects. MS and coimmunoprecipitation experiments identified 63 FtsQ-interacting partners, and we show that the interaction of FtsQ with the recently identified cell division protein SepIVA is independent of FtsQ phosphorylation and suggests a role of FtsQ in modulating cell division. FtsQ exhibited predominantly septal localization in both the presence and absence of SepIVA. Our results suggest a role for FtsQ in modulating the length, division, and survival of Mtb cells both in vitro and in the host.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Macrófagos/citologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/microbiologia , Proteínas de Bactérias/genética , Células Cultivadas , Humanos , Macrófagos/microbiologia , Mutação , Ligação Proteica
17.
Bioconjug Chem ; 30(3): 721-732, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669829

RESUMO

A major impediment to developing effective antimicrobials against Gram-negative bacteria like Salmonella is the ability of the bacteria to develop resistance against existing antibiotics and the inability of the antimicrobials to clear the intracellular bacteria residing in the gastrointestinal tract. As the critical balance of charge and hydrophobicity is required for effective membrane-targeting antimicrobials without causing any toxicity to mammalian cells, herein we report the synthesis and antibacterial properties of cholic acid-derived amphiphiles conjugated with alkyl chains of varied hydrophobicity. Relative to other hydrophobic counterparts, a compound with hexyl chain (6) acted as an effective antimicrobial against different Gram-negative bacteria. Apart from its ability to permeate the outer and inner membranes of bacteria; compound 6 can cross the cellular and lysosomal barriers of epithelial cells and macrophages and kill the facultative intracellular bacteria without disrupting the mammalian cell membranes. Oral delivery of compound 6 was able to clear the Salmonella-mediated gut infection and inflammation, and was able to combat persistent, stationary, and multi-drug-resistant clinical strains. Therefore, our study reveals the ability of cholic acid-derived amphiphiles to clear intracellular bacteria and Salmonella-mediated gut infection and inflammation.


Assuntos
Antibacterianos/administração & dosagem , Ácido Cólico/administração & dosagem , Inflamação/prevenção & controle , Enteropatias/prevenção & controle , Infecções por Salmonella/prevenção & controle , Administração Oral , Animais , Farmacorresistência Bacteriana Múltipla , Enteropatias/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Salmonella/isolamento & purificação , Salmonella/patogenicidade
18.
J Biol Chem ; 292(39): 16093-16108, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28821621

RESUMO

Protein kinase G (PknG), a thioredoxin-fold-containing eukaryotic-like serine/threonine protein kinase, is a virulence factor in Mycobacterium tuberculosis, required for inhibition of phagolysosomal fusion. Here, we unraveled novel functional facets of PknG during latency-like conditions. We found that PknG mediates persistence under stressful conditions like hypoxia and abets drug tolerance. PknG mutant displayed minimal growth in nutrient-limited conditions, suggesting its role in modulating cellular metabolism. Intracellular metabolic profiling revealed that PknG is necessary for efficient metabolic adaptation during hypoxia. Notably, the PknG mutant exhibited a reductive shift in mycothiol redox potential and compromised stress response. Exposure to antibiotics and hypoxic environment resulted in higher oxidative shift in mycothiol redox potential of PknG mutant compared with the wild type. Persistence during latency-like conditions required kinase activity and thioredoxin motifs of PknG and is mediated through phosphorylation of a central metabolic regulator GarA. Finally, using a guinea pig model of infection, we assessed the in vivo role of PknG in manifestation of disease pathology and established a role for PknG in the formation of stable granuloma, hallmark structures of latent tuberculosis. Taken together, PknG-mediated GarA phosphorylation is important for maintenance of both mycobacterial physiology and redox poise, an axis that is dispensable for survival under normoxic conditions but is critical for non-replicating persistence of mycobacteria. In conclusion, we propose that PknG probably acts as a modulator of latency-associated signals.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Granuloma/etiologia , Tuberculose Latente/microbiologia , Mycobacterium tuberculosis/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Antibióticos Antituberculose/farmacologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Feminino , Deleção de Genes , Granuloma/metabolismo , Granuloma/microbiologia , Cobaias , Isoniazida/farmacologia , Cinética , Tuberculose Latente/metabolismo , Tuberculose Latente/fisiopatologia , Metabolômica/métodos , Viabilidade Microbiana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/fisiologia , Fosforilação/efeitos dos fármacos , Mutação Puntual , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico
19.
J Biol Chem ; 292(17): 6855-6868, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28209712

RESUMO

Mycobacterium tuberculosis is known to modulate the host immune responses to facilitate its persistence inside the host cells. One of the key mechanisms includes repression of class-II transactivator (CIITA) and MHC-II expression in infected macrophages. However, the precise mechanism of CIITA and MHC-II down-regulation is not well studied. M. tuberculosis 6-kDa early secretory antigenic target (ESAT-6) is a known potent virulence and antigenic determinant. The M. tuberculosis genome encodes 23 such ESAT-6 family proteins. We herein report that M. tuberculosis and M. bovis bacillus Calmette-Guérin infection down-regulated the expression of CIITA/MHC-II by inducing hypermethylation in histone H3 lysine 9 (H3K9me2/3). Further, we showed that M. tuberculosis ESAT-6 family protein EsxL, encoded by Rv1198, is responsible for the down-regulation of CIITA/MHC-II by inducing H3K9me2/3. We further report that M. tuberculosis esxL induced the expression of nitric-oxide synthase, NO production, and p38 MAPK pathway, which in turn was responsible for the increased H3K9me2/3 in CIITA via up-regulation of euchromatic histone-lysine N-methyltransferase 2 (G9a). In contrast, inhibition of nitric-oxide synthase, p38 MAPK, and G9a abrogated H3K9me2/3, resulting in increased CIITA expression. A chromatin immunoprecipitation assay confirmed that hypermethylation at the promoter IV region of CIITA is mainly responsible for CIITA down-regulation and subsequent antigen presentation. We found that co-culture of macrophages infected with esxL-expressing M. smegmatis and mouse splenocytes led to down-regulation of IL-2, a key cytokine involved in T-cell proliferation. In summary, we demonstrate that M. tuberculosis EsxL inhibits antigen presentation by enhancing H3K9me2/3 at the CIITA promoter, thereby repressing its expression through NO and p38 MAPK activation.


Assuntos
Proteínas de Bactérias/fisiologia , Metilação de DNA , Macrófagos/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas Nucleares/genética , Transativadores/genética , Animais , Apresentação de Antígeno , Antígenos de Bactérias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Genoma Bacteriano , Histonas/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais , Baço/citologia , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
IUBMB Life ; 70(9): 889-904, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29934969

RESUMO

The emergence of increasingly drug-resistant Mycobacterium tuberculosis strains has become a crucial public health concern. In order to effectively treat tuberculosis, it is imperative to find newer drug targets, which are important for the in vivo bacterial survival and persistence. Phosphorylation based signaling cascades modulated by eukaryotic-like serine/threonine protein kinases and phosphatase in M. tuberculosis, transduce extracellular stimuli to a cellular response ensuing pathogen's growth, persistence and pathogenesis. Of the 11 STPKs that M. tuberculosis genome encodes, three kinases, namely PknA, PknB and PknG and the sole serine/threonine phosphatase PstP are crucial for the intracellular survival of the bacteria. PknA and PknB regulates cell growth, cell wall synthesis and morphological changes during bacterial cell division; while PknG modulates metabolic changes in response to stress and aids in bacterial survival during latency like conditions. PstP functions to dephosphorylate STPKs and their substrates and hence is important at nearly all stages of infection. Here, we review the current knowledge on PstP, PknA, PknB and PknG based on the genetic, biochemical, and functional studies in M. tuberculosis physiopathology. We further explore the potential of these molecules as targets for therapeutic intervention and discuss the advancement made in the development of inhibitors against these targets. © 2018 IUBMB Life, 70(9):889-904, 2018.


Assuntos
Antituberculosos/farmacologia , Desenvolvimento de Medicamentos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tuberculose/tratamento farmacológico , Animais , Humanos , Mycobacterium tuberculosis/enzimologia , Fosforilação , Tuberculose/enzimologia , Tuberculose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA