Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102135, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35709984

RESUMO

Accumulation of cytoplasmic inclusions containing fused in sarcoma (FUS), an RNA/DNA-binding protein, is a common hallmark of frontotemporal lobar degeneration and amyotrophic lateral sclerosis neuropathology. We have previously shown that DNA damage can trigger the cytoplasmic accumulation of N-terminally phosphorylated FUS. However, the functional consequences of N-terminal FUS phosphorylation are unknown. To gain insight into this question, we utilized proximity-dependent biotin labeling via ascorbate peroxidase 2 aired with mass spectrometry to investigate whether N-terminal phosphorylation alters the FUS protein-protein interaction network (interactome), and subsequently, FUS function. We report the first analysis comparing the interactomes of three FUS variants: homeostatic wildtype FUS (FUS WT), phosphomimetic FUS (FUS PM; a proxy for N-terminally phosphorylated FUS), and the toxic FUS proline 525 to leucine mutant (FUS P525L) that causes juvenile amyotrophic lateral sclerosis. We found that the phosphomimetic FUS interactome is uniquely enriched for a group of cytoplasmic proteins that mediate mRNA metabolism and translation, as well as nuclear proteins involved in the spliceosome and DNA repair functions. Furthermore, we identified and validated the RNA-induced silencing complex RNA helicase MOV10 as a novel interacting partner of FUS. Finally, we provide functional evidence that N-terminally phosphorylated FUS may disrupt homeostatic translation and steady-state levels of specific mRNA transcripts. Taken together, these results highlight phosphorylation as a unique modulator of the interactome and function of FUS.


Assuntos
Esclerose Lateral Amiotrófica , Dano ao DNA , Proteína FUS de Ligação a RNA , Esclerose Lateral Amiotrófica/metabolismo , Humanos , Mutação , Fosforilação , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
bioRxiv ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37131734

RESUMO

Progranulin (PGRN) deficiency is linked to neurodegenerative diseases including frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and neuronal ceroid lipofuscinosis. Proper PGRN levels are critical to maintain brain health and neuronal survival, however the function of PGRN is not well understood. PGRN is composed of 7.5 tandem repeat domains, called granulins, and is proteolytically processed into individual granulins inside the lysosome. The neuroprotective effects of full-length PGRN are well-documented, but the role of granulins is still unclear. Here we report, for the first time, that expression of single granulins is sufficient to rescue the full spectrum of disease pathology in mice with complete PGRN deficiency (Grn-/-). Specifically, rAAV delivery of either human granulin-2 or granulin-4 to Grn-/- mouse brain ameliorates lysosome dysfunction, lipid dysregulation, microgliosis, and lipofuscinosis similar to full-length PGRN. These findings support the idea that individual granulins are the functional units of PGRN, likely mediate neuroprotection within the lysosome, and highlight their importance for developing therapeutics to treat FTD-GRN and other neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA