Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 96, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778215

RESUMO

BACKGROUND: Definitive local therapy with stereotactic ablative radiation therapy (SABR) for ultracentral lung lesions is associated with a high risk of toxicity, including treatment related death. Stereotactic MR-guided adaptive radiation therapy (SMART) can overcome many of the challenges associated with SABR treatment of ultracentral lesions. METHODS: We retrospectively identified 14 consecutive patients who received SMART to ultracentral lung lesions from 10/2019 to 01/2021. Patients had a median distance from the proximal bronchial tree (PBT) of 0.38 cm. Tumors were most often lung primary (64.3%) and HILUS group A (85.7%). A structure-specific rigid registration approach was used for cumulative dose analysis. Kaplan-Meier log-rank analysis was used for clinical outcome data and the Wilcoxon Signed Rank test was used for dosimetric data. RESULTS: Here we show that SMART dosimetric improvements in favor of delivered plans over predicted non-adapted plans for PBT, with improvements in proximal bronchial tree DMax of 5.7 Gy (p = 0.002) and gross tumor 100% prescription coverage of 7.3% (p = 0.002). The mean estimated follow-up is 17.2 months and 2-year local control and local failure free survival rates are 92.9% and 85.7%, respectively. There are no grade ≥ 3 toxicities. CONCLUSIONS: SMART has dosimetric advantages and excellent clinical outcomes for ultracentral lung tumors. Daily plan adaptation reliably improves target coverage while simultaneously reducing doses to the proximal airways. These results further characterize the therapeutic window improvements for SMART. Structure-specific rigid dose accumulation dosimetric analysis provides insights that elucidate the dosimetric advantages of SMART more so than per fractional analysis alone.


Stereotactic MR-guided Adaptive Radiation Therapy (SMART) is a type of radiation therapy for cancer. With SMART, treatment can be adapted based on daily changes in the body seen via imaging. SMART can safely deliver radiation to lung tumors near the center of the body which are risky to treat, due to potential damage to nearby organs. We looked at 14 patients who received SMART to determine how much changing the radiation plan each day improved our ability to safely deliver high doses. We found that SMART not only improved our ability to cover the entirety of the tumor with the dose originally intended, but also reduced dose to nearby organs. Treatment resulted in excellent control of the tumor with few side effects. SMART shows promise for safer and more effective treatment for lung tumors in this part of the body.

2.
JTO Clin Res Rep ; 4(5): 100488, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37159821

RESUMO

Introduction: The recent results from the Nordic-HILUS study indicate stereotactic body radiation therapy (SBRT) is associated with high-grade toxicity for ultracentral (UC) tumors. We hypothesized that magnetic resonance-guided SBRT (MRgSBRT) or hypofractionated radiation therapy (MRgHRT) enables the safe delivery of high-dose radiation to central and UC lung lesions. Methods: Patients with UC or central lesions were treated with MRgSBRT/MRgHRT with real-time gating or adaptation. Central lesions were defined as per the Radiation Therapy Oncology Group and UC as per the HILUS study definitions: (1) group A or tumors less than 1 cm from the trachea and/or mainstem bronchi; or (2) group B or tumors less than 1 cm from the lobar bronchi. The Kaplan-Meier estimate and log-rank test were used to estimate survival. Associations between toxicities and other patient factors were tested using the Mann-Whitney U test and Fisher's exact test. Results: A total of 47 patients were included with a median follow-up of 22.9 months (95% confidence interval: 16.4-29.4). Most (53%) had metastatic disease. All patients had central lesions and 55.3% (n = 26) had UC group A. The median distance from the proximal bronchial tree was 6.0 mm (range: 0.0-19.0 mm). The median biologically equivalent dose (α/ß = 10) was 105 Gy (range: 75-151.2). The most common radiation schedule was 60 Gy in eight fractions (40.4%). Most (55%) had previous systemic therapy, 32% had immunotherapy and 23.4% had previous thoracic radiation therapy. There were 16 patients who underwent daily adaptation. The 1-year overall survival was 82% (median = not reached), local control 87% (median = not reached), and progression-free survival 54% (median = 15.1 mo, 95% confidence interval: 5.1-25.1). Acute toxicity included grade 1 (26%) and grade 2 (21%) with only two patients experiencing grade 3 (4.3%) in the long term. No grade 4 or 5 toxicities were seen. Conclusions: Previous studies noted high rates of toxicity after SBRT to central and UC lung lesions, with reports of grade 5 toxicities. In our cohort, the use of MRgSBRT/MRgHRT with high biologically effective doses was well tolerated, with two grade 3 toxicities and no grade 4/5.

3.
Technol Cancer Res Treat ; 20: 15330338211063033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34855577

RESUMO

Purpose: To monitor intrafraction motion during spine stereotactic body radiotherapy(SBRT) treatment delivery with readily available technology, we implemented triggered kV imaging using the on-board imager(OBI) of a modern medical linear accelerator with an advanced imaging package. Methods: Triggered kV imaging for intrafraction motion management was tested with an anthropomorphic phantom and simulated spine SBRT treatments to the thoracic and lumbar spine. The vertebral bodies and spinous processes were contoured as the image guided radiotherapy(IGRT) structures specific to this technique. Upon each triggered kV image acquisition, 2D projections of the IGRT structures were automatically calculated and updated at arbitrary angles for display on the kV images. Various shifts/rotations were introduced in x, y, z, pitch, and yaw. Gantry-angle-based triggering was set to acquire kV images every 45°. A group of physicists/physicians(n = 10) participated in a survey to evaluate clinical efficiency and accuracy of clinical decisions on images containing various phantom shifts. This method was implemented clinically for treatment of 42 patients(94 fractions) with 15 second time-based triggering. Result: Phantom images revealed that IGRT structure accuracy and therefore utility of projected contours during triggered imaging improved with smaller CT slice thickness. Contouring vertebra superior and inferior to the treatment site was necessary to detect clinically relevant phantom rotation. From the survey, detectability was proportional to the shift size in all shift directions and inversely related to the CT slice thickness. Clinical implementation helped evaluate robustness of patient immobilization. Based on visual inspection of projected IGRT contours on planar kV images, appreciable intrafraction motion was detected in eleven fractions(11.7%). Discussion: Feasibility of triggered imaging for spine SBRT intrafraction motion management has been demonstrated in phantom experiments and implementation for patient treatments. This technique allows efficient, non-invasive monitoring of patient position using the OBI and patient anatomy as a direct visual guide.


Assuntos
Fracionamento da Dose de Radiação , Movimento (Física) , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos da radiação , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/normas , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/normas , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA