Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 159(3): 530-42, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417105

RESUMO

Aggregation of damaged or misfolded proteins is a protective mechanism against proteotoxic stress, abnormalities of which underlie many aging-related diseases. Here, we show that in asymmetrically dividing yeast cells, aggregation of cytosolic misfolded proteins does not occur spontaneously but requires new polypeptide synthesis and is restricted to the surface of ER, which harbors the majority of active translation sites. Protein aggregates formed on ER are frequently also associated with or are later captured by mitochondria, greatly constraining aggregate mobility. During mitosis, aggregates are tethered to well-anchored maternal mitochondria, whereas mitochondria acquired by the bud are largely free of aggregates. Disruption of aggregate-mitochondria association resulted in increased mobility and leakage of mother-accumulated aggregates into the bud. Cells with advanced replicative age exhibit gradual decline of aggregates-mitochondria association, likely contributing to their diminished ability to rejuvenate through asymmetric cell division.


Assuntos
Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Divisão Celular , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Agregados Proteicos , Biossíntese de Proteínas , Saccharomyces cerevisiae/crescimento & desenvolvimento , Estresse Fisiológico
2.
J Cardiovasc Electrophysiol ; 35(5): 895-905, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433304

RESUMO

INTRODUCTION: Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS: Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS: Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION: These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Contração Miocárdica , Miócitos Cardíacos , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Engenharia Tecidual , Humanos , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328619

RESUMO

Cardiomyocytes (CMs) differentiated from human induced pluripotent stem cells (hiPSCs) are increasingly used in cardiac safety assessment, disease modeling and regenerative medicine. A vast majority of cardiotoxicity studies in the past have tested acute effects of compounds and drugs; however, these studies lack information on the morphological or physiological responses that may occur after prolonged exposure to a cardiotoxic compound. In this review, we focus on recent advances in chronic cardiotoxicity assays using hiPSC-CMs. We summarize recently published literature on hiPSC-CMs assays applied to chronic cardiotoxicity induced by anticancer agents, as well as non-cancer classes of drugs, including antibiotics, anti-hepatitis C virus (HCV) and antidiabetic drugs. We then review publications on the implementation of hiPSC-CMs-based assays to investigate the effects of non-pharmaceutical cardiotoxicants, such as environmental chemicals or chronic alcohol consumption. We also highlight studies demonstrating the chronic effects of smoking and implementation of hiPSC-CMs to perform genomic screens and metabolomics-based biomarker assay development. The acceptance and wide implementation of hiPSC-CMs-based assays for chronic cardiotoxicity assessment will require multi-site standardization of assay protocols, chronic cardiac maturity marker reproducibility, time points optimization, minimal cellular variation (commercial vs. lab reprogrammed), stringent and matched controls and close clinical setting resemblance. A comprehensive investigation of long-term repeated exposure-induced effects on both the structure and function of cardiomyocytes can provide mechanistic insights and recapitulate drug and environmental cardiotoxicity.


Assuntos
Células-Tronco Pluripotentes Induzidas , Cardiotoxicidade/etiologia , Humanos , Miócitos Cardíacos , Reprodutibilidade dos Testes , Fumar
4.
Front Physiol ; 15: 1395923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911328

RESUMO

Introduction: Pulsed Field Ablation (PFA) is a novel non-thermal method for cardiac ablation, relying on irreversible electroporation induced by high-energy pulsed electric fields (PEFs) to create localized lesions in the heart atria. A significant challenge in optimizing PFA treatments is determining the lethal electric field threshold (EFT), which governs ablation volume and varies with PEF waveform parameters. However, the proprietary nature of device developer's waveform characteristics and the lack of standardized nonclinical testing methods have left optimal EFTs for cardiac ablation uncertain. Methods: To address this gap, we introduced a laboratory protocol employing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in monolayer format to evaluate the impact of a range of clinically relevant biphasic pulse parameters on lethal EFT and adiabatic heating (AH). Cell death areas were assessed using fluorescent dyes and confocal microscopy, while lethal EFTs were quantified through comparison with electric field numerical simulations. Results and conclusion: Our study confirmed a strong correlation between cell death in hiPSC-CMs and the number and duration of pulses in each train, with pulse repetition frequency exerting a comparatively weaker influence. Fitting of these results through machine learning algorithms were used to develop an open-source online calculator. By estimating lethal EFT and associated temperature increases for diverse pulse parameter combinations, this tool, once validated, has the potential to significantly reduce reliance on animal models during early-stage device de-risking and performance assessment. This tool also offers a promising avenue for advancing PFA technology for cardiac ablation medical devices to enhance patient outcomes.

5.
Mol Biol Cell ; 35(8): br15, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38985518

RESUMO

Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells.


Assuntos
Aneuploidia , Diferenciação Celular , Proliferação de Células , Organoides , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Organoides/metabolismo , Colo/metabolismo , Intestinos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pontos de Checagem do Ciclo Celular/genética , Transformação Celular Neoplásica/genética
6.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790420

RESUMO

Aneuploidy, a near ubiquitous genetic feature of tumors, is a context-dependent driver of cancer evolution; however, the mechanistic basis of this role remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigate how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Single-cell RNA sequencing reveals that the gene expression signature across over 100 unique aneuploid karyotypes is enriched with p53 responsive genes. The primary driver of p53 activation is karyotype complexity. Complex aneuploid cells with multiple unbalanced chromosomes activate p53 and undergo G1 cell-cycle arrest, independent of DNA damage and without evidence of senescence. By contrast, simple aneuploid cells with 1-3 chromosomes gained or lost continue to proliferate, demonstrated by single cell tracking in colonoids. Notably, simple aneuploid cells exhibit impaired differentiation when niche factors are withdrawn. These findings suggest that while complex aneuploid cells are eliminated from the normal epithelium due to p53 activation, simple aneuploid cells can escape this checkpoint and may contribute to niche factor-independent growth of cancer-initiating cells.

7.
Physiol Rep ; 10(21): e15498, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36325586

RESUMO

Two of the most prominent organ systems, the nervous and the cardiovascular systems, are intricately connected to maintain homeostasis in mammals. Recent years have shown tremendous efforts toward therapeutic modulation of cardiac contractility and electrophysiology by electrical stimulation. Neuronal innervation and cardiac ganglia regulation are often overlooked when developing in vitro models for cardiac devices, but it is likely that peripheral nervous system plays a role in the clinical effects. We developed an in vitro neurocardiac coculture (ivNCC) model system to study cardiac and neuronal interplay using human induced pluripotent stem cell (hiPSC) technology. We demonstrated significant expression and colocalization of cardiac markers including troponin, α-actinin, and neuronal marker peripherin in neurocardiac coculture. To assess functional coupling between the cardiomyocytes and neurons, we evaluated nicotine-induced ß-adrenergic norepinephrine effect and found beat rate was significantly increased in ivNCC as compared to monoculture alone. The developed platform was used as a nonclinical model for the assessment of cardiac medical devices that deliver nonexcitatory electrical pulses to the heart during the absolute refractory period of the cardiac cycle, that is, cardiac contractility modulation (CCM) therapy. Robust coculture response was observed at 14 V/cm (5 V, 64 mA), monophasic, 2 ms pulse duration for pacing and 20 V/cm (7 V, 90 mA) phase amplitude, biphasic, 5.14 ms pulse duration for CCM. We observed that the CCM effect and kinetics were more pronounced in coculture as compared to cardiac monoculture, supporting a hypothesis that some part of CCM mechanism of action can be attributed to peripheral nervous system stimulation. This study provides novel characterization of CCM effects on hiPSC-derived neurocardiac cocultures. This innervated human heart model can be further extended to investigate arrhythmic mechanisms, neurocardiac safety, and toxicity post-chronic exposure to materials, drugs, and medical devices. We present data on acute CCM electrical stimulation effects on a functional and optimized coculture using commercially available hiPSC-derived cardiomyocytes and neurons. Moreover, this study provides an in vitro human heart model to evaluate neuronal innervation and cardiac ganglia regulation of contractility by applying CCM pulse parameters that closely resemble clinical setting. This ivNCC platform provides a potential tool for investigating aspects of cardiac and neurological device safety and performance.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Técnicas de Cocultura , Contração Miocárdica/fisiologia , Miócitos Cardíacos , Cardiotônicos/farmacologia , Mamíferos
8.
J Vis Exp ; (190)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36591970

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are currently being explored for multiple in vitro applications and have been used in regulatory submissions. Here, we extend their use to cardiac medical device safety or performance assessments. We developed a novel method to evaluate cardiac medical device contractile properties in robustly contracting 2D hiPSC-CMs monolayers plated on a flexible extracellular matrix (ECM)-based hydrogel substrate. This tool enables the quantification of the effects of cardiac electrophysiology device signals on human cardiac function (e.g., contractile properties) with standard laboratory equipment. The 2D hiPSC-CM monolayers were cultured for 2-4 days on a flexible hydrogel substrate in a 48-well format. The hiPSC-CMs were exposed to standard cardiac contractility modulation (CCM) medical device electrical signals and compared to control (i.e., pacing only) hiPSC-CMs. The baseline contractile properties of the 2D hiPSC-CMs were quantified by video-based detection analysis based on pixel displacement. The CCM-stimulated 2D hiPSC-CMs plated on the flexible hydrogel substrate displayed significantly enhanced contractile properties relative to baseline (i.e., before CCM stimulation), including an increased peak contraction amplitude and accelerated contraction and relaxation kinetics. Furthermore, the utilization of the flexible hydrogel substrate enables the multiplexing of the video-based cardiac-excitation contraction coupling readouts (i.e., electrophysiology, calcium handling, and contraction) in healthy and diseased hiPSC-CMs. The accurate detection and quantification of the effects of cardiac electrophysiological signals on human cardiac contraction is vital for cardiac medical device development, optimization, and de-risking. This method enables the robust visualization and quantification of the contractile properties of the cardiac syncytium, which should be valuable for nonclinical cardiac medical device safety or effectiveness testing. This paper describes, in detail, the methodology to generate 2D hiPSC-CM hydrogel substrate monolayers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Cultivadas , Contração Miocárdica , Cardiotônicos/farmacologia , Hidrogéis/farmacologia , Diferenciação Celular
9.
Front Physiol ; 13: 1023563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439258

RESUMO

Cardiac contractility modulation (CCM) is a medical device therapy whereby non-excitatory electrical stimulations are delivered to the myocardium during the absolute refractory period to enhance cardiac function. We previously evaluated the effects of the standard CCM pulse parameters in isolated rabbit ventricular cardiomyocytes and 2D human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) monolayers, on flexible substrate. In the present study, we sought to extend these results to human 3D microphysiological systems to develop a robust model to evaluate various clinical CCM pulse parameters in vitro. HiPSC-CMs were studied in conventional 2D monolayer format, on stiff substrate (i.e., glass), and as 3D human engineered cardiac tissues (ECTs). Cardiac contractile properties were evaluated by video (i.e., pixel) and force-based analysis. CCM pulses were assessed at varying electrical 'doses' using a commercial pulse generator. A robust CCM contractile response was observed for 3D ECTs. Under comparable conditions, conventional 2D monolayer hiPSC-CMs, on stiff substrate, displayed no contractile response. 3D ECTs displayed enhanced contractile properties including increased contraction amplitude (i.e., force), and accelerated contraction and relaxation slopes under standard acute CCM stimulation. Moreover, 3D ECTs displayed enhanced contractility in a CCM pulse parameter-dependent manner by adjustment of CCM pulse delay, duration, amplitude, and number relative to baseline. The observed acute effects subsided when the CCM stimulation was stopped and gradually returned to baseline. These data represent the first study of CCM in 3D hiPSC-CM models and provide a nonclinical tool to assess various CCM device signals in 3D human cardiac tissues prior to in vivo animal studies. Moreover, this work provides a foundation to evaluate the effects of additional cardiac medical devices in 3D ECTs.

10.
Mol Cell Oncol ; 8(4): 1938479, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616871

RESUMO

TP53-dependent cell cycle arrest has been proposed to limit the proliferation of aneuploid cells. We investigated the cellular response to aneuploidy in cell lines and organoid cultures and found that TP53 (also known as p53) is not activated following aneuploidy induction in organoids. However, we confirmed that p53 is required for high mitotic fidelity. Our findings provide a revised view on how p53 safeguards against aneuploidy.

11.
Physiol Rep ; 9(21): e15085, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34729935

RESUMO

Cardiac contractility modulation (CCM) is an intracardiac therapy whereby nonexcitatory electrical simulations are delivered during the absolute refractory period of the cardiac cycle. We previously evaluated the effects of CCM in isolated adult rabbit ventricular cardiomyocytes and found a transient increase in calcium and contractility. In the present study, we sought to extend these results to human cardiomyocytes using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to develop a robust model to evaluate CCM in vitro. HiPSC-CMs (iCell Cardiomyocytes2 , Fujifilm Cellular Dynamic, Inc.) were studied in monolayer format plated on flexible substrate. Contractility, calcium handling, and electrophysiology were evaluated by fluorescence- and video-based analysis (CellOPTIQ, Clyde Biosciences). CCM pulses were applied using an A-M Systems 4100 pulse generator. Robust hiPSC-CMs response was observed at 14 V/cm (64 mA) for pacing and 28 V/cm (128 mA, phase amplitude) for CCM. Under these conditions, hiPSC-CMs displayed enhanced contractile properties including increased contraction amplitude and faster contraction kinetics. Likewise, calcium transient amplitude increased, and calcium kinetics were faster. Furthermore, electrophysiological properties were altered resulting in shortened action potential duration (APD). The observed effects subsided when the CCM stimulation was stopped. CCM-induced increase in hiPSC-CMs contractility was significantly more pronounced when extracellular calcium concentration was lowered from 2 mM to 0.5 mM. This study provides a comprehensive characterization of CCM effects on hiPSC-CMs. These data represent the first study of CCM in hiPSC-CMs and provide an in vitro model to assess physiologically relevant mechanisms and evaluate safety and effectiveness of future cardiac electrophysiology medical devices.


Assuntos
Potenciais de Ação , Células-Tronco Pluripotentes Induzidas/citologia , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Sinalização do Cálcio , Diferenciação Celular , Células Cultivadas , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo
12.
Neoplasia ; 23(5): 488-501, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33906087

RESUMO

Although much is known about the gene mutations required to drive colorectal cancer (CRC) initiation, the tissue-specific selective microenvironments in which neoplasia arises remains less characterized. Here, we determined whether modulation of intestinal stem cell niche morphogens alone can exert a neoplasia-relevant selective pressure on normal colonic epithelium. Using adult stem cell-derived murine colonic epithelial organoids (colonoids), we employed a strategy of sustained withdrawal of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibition to select for and expand survivors. EGFR-signaling-independent (iEGFR) colonoids emerged over rounds of selection and expansion. Colonoids derived from a mouse model of chronic mucosal injury showed an enhanced ability to adapt to EGFR inhibition. Whole-exome and transcriptomic analyses of iEGFR colonoids demonstrated acquisition of deleterious mutations and altered expression of genes implicated in EGF signaling, pyroptosis, and CRC. iEGFR colonoids acquired dysplasia-associated cytomorphologic changes, an increased proliferative rate, and the ability to survive independently of other required niche factors. These changes were accompanied by emergence of aneuploidy and chromosomal instability; further, the observed mitotic segregation errors were significantly associated with loss of interkinetic nuclear migration, a fundamental and dynamic process underlying intestinal epithelial homeostasis. This study provides key evidence that chromosomal instability and other phenotypes associated with neoplasia can be induced ex vivo via adaptation to EGF withdrawal in normal and stably euploid colonic epithelium, without introducing cancer-associated driver mutations. In addition, prior mucosal injury accelerates this evolutionary process.


Assuntos
Instabilidade Cromossômica , Colo/metabolismo , Mucosa Intestinal/metabolismo , Adaptação Biológica , Aneuploidia , Animais , Proliferação de Células , Células Cultivadas , Colo/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Genes APC , Humanos , Mucosa Intestinal/patologia , Camundongos , Mutação , Organoides , Técnicas de Cultura de Tecidos
13.
Cell Rep ; 34(12): 108892, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33761356

RESUMO

Most solid tumors are aneuploid, and p53 has been implicated as the guardian of the euploid genome. Previous experiments using human cell lines showed that aneuploidy induction leads to p53 accumulation and p21-mediated G1 cell cycle arrest. We find that adherent 2-dimensional (2D) cultures of human immortalized or cancer cell lines activate p53 upon aneuploidy induction, whereas suspension cultures of a human lymphoid cell line undergo a p53-independent cell cycle arrest. Surprisingly, 3D human and mouse organotypic cultures from neural, intestinal, or mammary epithelial tissues do not activate p53 or arrest in G1 following aneuploidy induction. p53-deficient colon organoids have increased aneuploidy and frequent lagging chromosomes and multipolar spindles during mitosis. These data suggest that p53 may not act as a universal surveillance factor restricting the proliferation of aneuploid cells but instead helps directly or indirectly ensure faithful chromosome transmission likely by preventing polyploidization and influencing spindle mechanics.


Assuntos
Aneuploidia , Proteína Supressora de Tumor p53/metabolismo , Animais , Adesão Celular , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Colo/metabolismo , Humanos , Mamíferos , Camundongos Endogâmicos C57BL , Mitose , Organoides/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo
14.
Sci Adv ; 6(4): eaaw6938, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010778

RESUMO

A central goal of precision medicine is to predict disease outcomes and design treatments based on multidimensional information from afflicted cells and tissues. Cell morphology is an emergent readout of the molecular underpinnings of a cell's functions and, thus, can be used as a method to define the functional state of an individual cell. We measured 216 features derived from cell and nucleus morphology for more than 30,000 breast cancer cells. We find that single cell-derived clones (SCCs) established from the same parental cells exhibit distinct and heritable morphological traits associated with genomic (ploidy) and transcriptomic phenotypes. Using unsupervised clustering analysis, we find that the morphological classes of SCCs predict distinct tumorigenic and metastatic potentials in vivo using multiple mouse models of breast cancer. These findings lay the groundwork for using quantitative morpho-profiling in vitro as a potentially convenient and economical method for phenotyping function in cancer in vivo.


Assuntos
Neoplasias da Mama/patologia , Análise de Célula Única , Animais , Biomarcadores Tumorais , Neoplasias da Mama/etiologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Estadiamento de Neoplasias , Fenótipo , Prognóstico , Análise de Célula Única/métodos , Transcriptoma
16.
Oncotarget ; 7(5): 5401-15, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26700961

RESUMO

Many p53 hotspot mutants not only lose the transcriptional activity, but also show dominant-negative (DN) and oncogenic gain-of-function (GOF) activities. Increasing evidence indicates that knockdown of mutant p53 (mutp53) in cancer cells reduces their aggressive properties, suggesting that survival and proliferation of cancer cells are, at least partially, dependent on the presence of mutp53. However, these p53 siRNAs can downregulate both wild-type p53 (wtp53) and mutp53, which limits their therapeutic applications. In order to specifically deplete mutp53, we have developed allele-specific siRNAs against p53 hotspot mutants and validated their biological effects in the absence or presence of wtp53. First, the mutp53-specific siRNAs selectively reduced protein levels of matched p53 mutants with minimal reduction in wtp53 levels. Second, downregulation of mutp53 in cancer cells expressing a mutp53 alone (p53mut) resulted in significantly decreased cell proliferation and migration. Third, transfection of mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53 also reduced cell proliferation and migration with increased transcripts of p53 downstream target genes, which became further profound when cells were treated with an MDM2 inhibitor Nutlin-3a or a chemotherapeutic agent doxorubicin. These results indicate that depletion of mutp53 by its specific siRNA restored endogenous wtp53 activity in cells expressing both wtp53 and mutp53. This is the first study demonstrating biological effects and therapeutic potential of allele-specific silencing of mutp53 by mutp53-specific siRNAs in cancer cells expressing both wtp53 and mutp53, thus providing a novel strategy towards targeted cancer therapies.


Assuntos
Carcinogênese/patologia , Proteínas Mutantes/genética , Mutação/genética , Neoplasias/prevenção & controle , Proteína Supressora de Tumor p53/genética , Alelos , Animais , Apoptose , Western Blotting , Carcinogênese/genética , Adesão Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Genes Dominantes , Humanos , Imidazóis/metabolismo , Técnicas Imunoenzimáticas , Camundongos , Neoplasias/genética , Neoplasias/patologia , Piperazinas/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA