Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbes Infect ; 9(14-15): 1530-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18024120

RESUMO

In contrast to most gammaherpesviruses, Bovine herpesvirus 4 (BoHV-4) has a broad range of host species both in vitro and in vivo. Several in vitro studies demonstrated that some human cell lines are sensitive or even permissive to BoHV-4. These observations led to the hypothesis that cross-species transmission of BoHV-4 could lead to human infections. In the present study, we investigate the sensitivity of BoHV-4 to neutralization by naïve human sera in order to determine if humans exhibit innate anti-viral activities against this virus. Our results demonstrate that human sera from naïve individuals, in contrast to the sera of naïve subjects from various animal species, neutralize BoHV-4 efficiently. A series of complementary experiments were performed to unravel the mechanism(s) of this neutralization. The data obtained in this study demonstrates that human serum neutralizes BoHV-4 in a complement dependent manner activated by natural antibodies raised against the Galalpha1-3Galbeta1-4GlcNAc-R epitope expressed by bovine cells.


Assuntos
Anticorpos Antivirais/imunologia , Ativação do Complemento , Via Clássica do Complemento/imunologia , Herpesvirus Bovino 4/imunologia , Soros Imunes/imunologia , Animais , Bovinos , Linhagem Celular , Chlorocebus aethiops , Humanos , Imunidade Inata , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Testes de Neutralização , Trissacarídeos/imunologia , Células Vero
2.
Algorithms Mol Biol ; 11: 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973707

RESUMO

BACKGROUND: In this paper we propose a method and discuss its computational implementation as an integrated tool for the analysis of viral genetic diversity on data generated by high-throughput sequencing. The main motivation for this work is to better understand the genetic diversity of viruses with high rates of nucleotide substitution, as HIV-1 and Influenza. Most methods for viral diversity estimation proposed so far are intended to take benefit of the longer reads produced by some next-generation sequencing platforms in order to estimate a population of haplotypes which represent the diversity of the original population. The method proposed here is custom-made to take advantage of the very low error rate and extremely deep coverage per site, which are the main features of some neglected technologies that have not received much attention due to the short length of its reads, which precludes haplotype estimation. This approach allowed us to avoid some hard problems related to haplotype reconstruction (need of long reads, preliminary error filtering and assembly). RESULTS: We propose to measure genetic diversity of a viral population through a family of multinomial probability distributions indexed by the sites of the virus genome, each one representing the distribution of nucleic bases per site. Moreover, the implementation of the method focuses on two main optimization strategies: a read mapping/alignment procedure that aims at the recovery of the maximum possible number of short-reads; the inference of the multinomial parameters in a Bayesian framework with smoothed Dirichlet estimation. The Bayesian approach provides conditional probability distributions for the multinomial parameters allowing one to take into account the prior information of the control experiment and providing a natural way to separate signal from noise, since it automatically furnishes Bayesian confidence intervals and thus avoids the drawbacks of preliminary error filtering. CONCLUSIONS: The methods described in this paper have been implemented as an integrated tool called Tanden (Tool for Analysis of Diversity in Viral Populations) and successfully tested on samples obtained from HIV-1 strain NL4-3 (group M, subtype B) cultivations on primary human cell cultures in many distinct viral propagation conditions. Tanden is written in C# (Microsoft), runs on the Windows operating system, and can be downloaded from: http://tanden.url.ph/.

3.
PLoS One ; 10(9): e0139037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413773

RESUMO

In order to establish new infections HIV-1 particles need to attach to receptors expressed on the cellular surface. HIV-1 particles interact with a cell membrane receptor known as CD4 and subsequently with another cell membrane molecule known as a co-receptor. Two major different co-receptors have been identified: C-C chemokine Receptor type 5 (CCR5) and C-X-C chemokine Receptor type 4 (CXCR4) Previous reports have demonstrated cellular modifications upon HIV-1 binding to its co-receptors including gene expression modulations. Here we investigated the effect of viral binding to either CCR5 or CXCR4 co-receptors on viral diversity after a single round of reverse transcription. CCR5 and CXCR4 pseudotyped viruses were used to infect non-stimulated and stimulated PBMCs and purified CD4 positive cells. We adopted the SOLiD methodology to sequence virtually the entire proviral DNA from all experimental infections. Infections with CCR5 and CXCR4 pseudotyped virus resulted in different patterns of genetic diversification. CCR5 virus infections produced extensive proviral diversity while in CXCR4 infections a more localized substitution process was observed. In addition, we present pioneering results of a recently developed method for the analysis of SOLiD generated sequencing data applicable to the study of viral quasi-species. Our findings demonstrate the feasibility of viral quasi-species evaluation by NGS methodologies. We presented for the first time strong evidence for a host cell driving mechanism acting on the HIV-1 genetic variability under the control of co-receptor stimulation. Additional investigations are needed to further clarify this question, which is relevant to viral diversification process and consequent disease progression.


Assuntos
DNA Viral/genética , HIV-1/genética , Mutação/genética , Provírus/genética , Tropismo/genética , Substituição de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Códon/genética , Eletroforese em Gel de Ágar , Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Células HeLa , Humanos , Nucleotídeos/genética , Fases de Leitura Aberta/genética , Receptores CCR5/metabolismo , Análise de Sequência de DNA , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA