Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(26): 266201, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215361

RESUMO

We explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding ∼100 nm^{2}) experimentally, numerically, and theoretically. We use a setup composed of two molecular smooth incommensurate surfaces: graphene-covered tip and substrate. The experiments and molecular dynamic simulations demonstrate independence of the friction force on the normal load for a wide range of normal loads and relative surface velocities. We propose an atomistic mechanism for this phenomenon, associated with synchronic out-of-plane surface fluctuations of thermal origin, and confirm it by numerical experiments. Based on this mechanism, we develop a theory for this type of superlubricity and show that friction force increases linearly with increasing temperature and relative velocity for velocities larger than a threshold velocity. The molecular dynamic results are in a fair agreement with predictions of the theory.

2.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047655

RESUMO

We assess bithiophene (C8H6S2) as a novel sulfur-based promotor for the growth of single-walled carbon nanotubes (SWCNTs) in the aerosol (floating catalyst) CVD method. Technologically suitable equilibrium vapor pressure and an excess of hydrocarbon residuals formed under its decomposition make bithiophene an attractive promoter for the production of carbon nanotubes in general and specifically for ferrocene-based SWCNT growth. Indeed, we detect a moderate enhancement in the carbon nanotube yield and a decrease in the equivalent sheet resistance of the films at a low bithiophene content, indicating the improvement of the product properties. Moreover, the relatively high concentrations and low temperature stability of bithiophene result in non-catalytical decomposition, leading to the formation of pyrolytic carbon deposits; the deposits appear as few-layer graphene structures. Thus, bithiophene pyrolysis opens a route for the cheap production of hierarchical composite thin films comprising carbon nanotubes and few-layer graphene, which might be of practical use for hierarchical adsorbents, protective membranes, or electrocatalysis.


Assuntos
Grafite , Nanotubos de Carbono , Nanotubos de Carbono/química , Grafite/química
3.
Anal Chem ; 94(36): 12305-12313, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36027051

RESUMO

Alcohol intoxication has a dangerous effect on human health and is often associated with a risk of catastrophic injuries and alcohol-related crimes. A demand to address this problem adheres to the design of new sensor systems for the real-time monitoring of exhaled breath. We introduce a new sensor system based on a porous hydrophilic layer of submicron silica particles (SiO2 SMPs) placed on a one-dimensional photonic crystal made of Ta2O5/SiO2 dielectric layers whose operation relies on detecting changes in the position of surface wave resonance during capillary condensation in pores. To make the active layer of SiO2 SMPs, we examine the influence of electrostatic interactions of media, particles, and the surface of the crystal influenced by buoyancy, gravity force, and Stokes drag force in the frame of the dip-coating preparation method. We evaluate the sensing performance toward biomarkers such as acetone, ammonia, ethanol, and isopropanol and test sensor system capabilities for alcohol intoxication assessment. We have found this sensor to respond to all tested analytes in a broad range of concentrations. By processing the sensor signals by principal component analysis, we selectively determined the analytes. We demonstrated the excellent performance of our device for alcohol intoxication assessment in real-time.


Assuntos
Intoxicação Alcoólica , Acetona/análise , Intoxicação Alcoólica/diagnóstico , Etanol/análise , Humanos , Óptica e Fotônica , Fótons , Dióxido de Silício/química
4.
Small ; 18(22): e2200476, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315215

RESUMO

Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale. The pure trend in the miniaturization of critical electronic semiconducting components has been recently enhanced by implementing bio-organic systems in electronics. So far, significant efforts have been made to find novel lithographic approaches and develop old ones to reach compatibility with delicate bio-organic systems and minimize the impact on the environment. Herein, such delicate materials and sophisticated patterning techniques are briefly reviewed.


Assuntos
Nanoestruturas , Semicondutores , Eletrônica , Miniaturização , Impressão
5.
Nanotechnology ; 33(48)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35985239

RESUMO

Design of new smart prosthetics or robotic grippers gives a major impetus to low-cost manufacturing and rapid prototyping of force sensing devices. In this paper, we examine piezoresistive force sensors based on carbon nanotube fibers fabricated by a novel wet pulling technique. The developed sensor is characterized by an adjustable force range coupled with high sensitivity to enable the detection of a wide range of forces and displacements limited by the experimental setup only. We have demonstrated the applicability of the developed unit in tactile sensing, displacement sensing, and nanophone vibration monitoring system and evaluated its force sensing characteristics, i.e. displacement/force input and resistance/mechanical response. In the experiments it measures 0-115 N force range within 2.5 mm displacement. Moreover, the sensor demonstrates good linearity, low hysteresis, and stability when tested over 10 000 cycles. The developed sensor suits multiple applications in the field of soft and transparent sensors, nanophones, actuators, and other robotics devices for both regular and extreme environments, e.g. deep underwater and radioactive environment.

6.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500425

RESUMO

Donor-acceptor conjugated polymers are considered advanced semiconductor materials for the development of thin-film electronics. One of the most attractive families of polymeric semiconductors in terms of photovoltaic applications are benzodithiophene-based polymers owing to their highly tunable electronic and physicochemical properties, and readily scalable production. In this work, we report the synthesis of three novel push-pull benzodithiophene-based polymers with different side chains and their investigation as hole transport materials (HTM) in perovskite solar cells (PSCs). It is shown that polymer P3 that contains triisopropylsilyl side groups exhibits better film-forming ability that, along with high hole mobilities, results in increased characteristics of PSCs. Encouraging a power conversion efficiency (PCE) of 17.4% was achieved for P3-based PSCs that outperformed the efficiency of devices based on P1, P2, and benchmark PTAA polymer. These findings feature the great potential of benzodithiophene-based conjugated polymers as dopant-free HTMs for the fabrication of efficient perovskite solar cells.


Assuntos
Compostos de Cálcio , Polímeros , Óxidos , Semicondutores
7.
Faraday Discuss ; 227: 163-170, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325929

RESUMO

III-VI post-transition metal chalcogenides (InSe and GaSe) are a new class of layered semiconductors, which feature a strong variation of size and type of their band gaps as a function of number of layers (N). Here, we investigate exfoliated layers of InSe and GaSe ranging from bulk crystals down to monolayer, encapsulated in hexagonal boron nitride, using Raman spectroscopy. We present the N-dependence of both intralayer vibrations within each atomic layer, as well as of the interlayer shear and layer breathing modes. A linear chain model can be used to describe the evolution of the peak positions as a function of N, consistent with first principles calculations.

8.
Nanotechnology ; 32(9): 095206, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33197904

RESUMO

We demonstrate that single-walled carbon nanotube (SWCNT) membranes can be successfully utilized as nanometer-thick substrates for enhanced visualization and facilitated study of individual nanoparticles. As model objects, we transfer optically resonant 200 nm silicon nanoparticles onto pristine and ethanol-densified SWCNT membranes by the femtosecond laser printing method. We image nanoparticles by scanning electron and bright-field optical microscopy, and characterize by linear and Raman scattering spectroscopy. The use of a pristine SWCNT membrane allows to achieve an order-of-magnitude enhancement of the optical contrast of the nanoparticle bright field image over the results shown in the case of the glass substrate use. The observed optical contrast enhancement is in agreement with the spectrophotometric measurements showing an extremely low specular reflectance of the pristine membrane (≤0.1%). Owing to the high transparency, negligibly small reflectance and thickness, SWCNT membranes offer a variety of perspective applications in nanophotonics, bioimaging and synchrotron radiation studies.

9.
Sensors (Basel) ; 20(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326578

RESUMO

Novel bio-materials, like chitosan and its derivatives, appeal to finding a new niche in room temperature gas sensors, demonstrating not only a chemoresistive response, but also changes in mechanical impedance due to vapor adsorption. We determined the coefficients of elasticity and viscosity of chitosan acetate films in air, ammonia, and water vapors by acoustic spectroscopy. The measurements were carried out while using a resonator with a longitudinal electric field at the different concentrations of ammonia (100-1600 ppm) and air humidity (20-60%). It was established that, in the presence of ammonia, the longitudinal and shear elastic modules significantly decreased, whereas, in water vapor, they changed slightly. At that, the viscosity of the films increased greatly upon exposure to both vapors. We found that the film's conductivity increased by two and one orders of magnitude, respectively, in ammonia and water vapors. The effect of analyzed vapors on the resonance properties of a piezoelectric resonator with a lateral electric field that was loaded by a chitosan film on its free side was also experimentally studied. In these vapors, the parallel resonance frequency and maximum value of the real part of the electrical impedance decreased, especially in ammonia. The results of a theoretical analysis of the resonance properties of such a sensor in the presence of vapors turned out to be in a good agreement with the experimental data. It has been also found that with a growth in the concentration of the studied vapors, a decrease in the elastic constants, and an increase in the viscosity factor and conductivity lead to reducing the parallel resonance frequency and the maximum value of the real part of the electric impedance of the piezoelectric resonator with a lateral electric field that was loaded with a chitosan film. This leads to an increase in the sensitivity of such a sensor during exposure to these gas vapors.

10.
Nano Lett ; 19(9): 5836-5843, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343179

RESUMO

Materials with electrically tunable optical properties offer a wide range of opportunities for photonic applications. The optical properties of the single-walled carbon nanotubes (SWCNTs) can be significantly altered in the near-infrared region by means of electrochemical doping. The states' filling, which is responsible for the optical absorption suppression under doping, also alters the nonlinear optical response of the material. Here, for the first time we report that the electrochemical doping can tailor the nonlinear optical absorption of SWCNT films and demonstrate its application to control pulsed fiber laser generation. With a pump-probe technique, we show that under an applied voltage below 2 V the photobleaching of the material can be gradually reduced and even turned to photoinduced absorption. Furthermore, we integrated a carbon nanotube electrochemical cell on a side-polished fiber to tune the absorption saturation and implemented it into the fully polarization-maintaining fiber laser. We show that the pulse generation regime can be reversibly switched between femtosecond mode-locking and microsecond Q-switching using different gate voltages. This approach paves the road toward carbon nanotube optical devices with tunable nonlinearity.

11.
Opt Express ; 26(18): 23911-23917, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184885

RESUMO

Bismuth-doped fiber is a promising active media for pulsed lasers operating in various spectral regions. In this paper, we report on a picosecond mode-locked laser at a wavelength of 1.32 µm, based on a phosphosilicate fiber doped with bismuth. Stable self-starting generation of dissipative solitons, using single-walled carbon nanotubes (SWCNT) as a saturable absorber, was achieved. Evolution of the pulsed regime, depending on pump power, and stability of the pulsing were investigated.

12.
Nanotechnology ; 29(3): 035301, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29182523

RESUMO

We present a method for reduced graphene oxide (GO) patterning on the surface of GO film by a 445 nm solid-state laser with the adjustable fluence from 0.2-20 kJ cm-2. We demonstrate that the optimal argon concentration in air to obtain good quality reduced GO films is 90%. Varying the laser irradiation energy density allows controlling the resistance and I G /I D and I G /I 2D ratios of Raman peak intensities. As a result, we demonstrate the possibility of forming of conductive patterns with a sheet resistance of 189 Ohm/□ and ∼1 µm film thickness by a local reduction of the GO. The fabricated structures reveal excellent bolometric response with a high speed and sensitivity to the radiation in the visible wavelength region.

13.
Nanotechnology ; 29(10): 105404, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29384726

RESUMO

We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

14.
Nanotechnology ; 29(32): 325501, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29781448

RESUMO

The integration of energy harvesting and energy storage in a single device both enables the conversion of ambient energy into electricity and provides a sustainable power source for various electronic devices and systems. On the other hand, mechanical flexibility, coupled with optical transparency of the energy storage devices, is required for many applications, ranging from self-powered rolled-up displays to wearable optoelectronic devices. We integrate a piezoelectric poly(vinylidene-trifluoroethylene) (P(VDF-TrFE)) film into a flexible supercapacitor system to harvest and store the energy. The asymmetric output characteristics of the piezoelectric P(VDF-TrFE) film under mechanical impacts results in effective charging of the supercapacitors. The integrated piezo-supercapacitor exhibits a specific capacitance of 50 F g-1. The open-circuit voltage of the flexible and transparent supercapacitor reached 500 mV within 20 s during the mechanical action. Our hybridized energy harvesting and storage device can be further extended to provide a sustainable power source for various types of sensors integrated into wearable units.

15.
Nanotechnology ; 29(32): 325704, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29763412

RESUMO

The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10-5 to 0.1) and the SPL of 120 dB re 20 µPa @ 1 m in air and 170 dB re 1 µPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm-2). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.

16.
Opt Express ; 24(25): 28768-28773, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958520

RESUMO

This work for the first time reports the results on study of a polymer-free carbon nanotube (CNT) films used as a saturable absorber in an all-fibre laser. It is demonstrated that free-standing single-walled CNT films fabricated by an aerosol method are able to ensure generation of transform-limited pulses in an Er all-fibre ring laser with duration of several picoseconds and high quality of mode locking. The optimal average output power levels are identified, amounting to 0.4-0.5 mW depending on the linear transmission of the studied samples (60% or 80%). Application of polymer-free CNT films solves problems related to degradation of conventional polymer matrices of CNT-based saturable absorbers and paves the way to longer-lasting and more reliable saturable absorbers compatible with all-fibre laser configurations.

17.
Nanotechnology ; 27(23): 235403, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27122323

RESUMO

Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g(-1) or 552 µF cm(-2)), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

18.
Nanotechnology ; 27(48): 485709, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27811402

RESUMO

The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

19.
Nanotechnology ; 27(18): 185401, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27005494

RESUMO

We report a hybrid solar cell based on single walled carbon nanotubes (SWNTs) interfaced with amorphous silicon (a-Si). The high quality carbon nanotube network was dry transferred onto intrinsic a-Si forming Schottky junction for metallic SWNT bundles and heterojunctions for semiconducting SWNT bundles. The nanotube chemical doping and a-Si surface treatment minimized the hysteresis effect in current-voltage characteristics allowing an increase in the conversion efficiency to 1.5% under an air mass 1.5 solar spectrum simulator. We demonstrated that the thin SWNT film is able to replace a simultaneously p-doped a-Si layer and transparent conductive electrode in conventional amorphous silicon thin film photovoltaics.

20.
J Am Chem Soc ; 137(25): 7982-5, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26091443

RESUMO

Organic solar cells have been regarded as a promising electrical energy source. Transparent and conductive carbon nanotube film offers an alternative to commonly used ITO in photovoltaics with superior flexibility. This communication reports carbon nanotube-based indium-free organic solar cells and their flexible application. Direct and dry deposited carbon nanotube film doped with MoO(x) functions as an electron-blocking transparent electrode, and its performance is enhanced further by overcoating with PEDOT: PSS. The single-walled carbon nanotube organic solar cell in this work shows a power conversion efficiency of 6.04%. This value is 83% of the leading ITO-based device performance (7.48%). Flexible application shows 3.91% efficiency and is capable of withstanding a severe cyclic flex test.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA