Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 692: 149354, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091837

RESUMO

Aging is an intricate process characterized by the gradual deterioration of the physiological integrity of a living organism. This unfortunate phenomenon inevitably leads to a decline in functionality and a heightened susceptibility to the ultimate fate of mortality. Therefore, it is of utmost importance to implement interventions that possess the capability to reverse or preempt age-related pathology. Caloric restriction mimetics (CRMs) refer to a class of molecules that have been observed to elicit advantageous outcomes on both health and longevity in various model organisms and human subjects. Notably, these compounds offer a promising alternative to the arduous task of adhering to a caloric restriction diet and mitigate the progression of the aging process and extend the duration of life in laboratory animals and human population. A plethora of molecular signals have been linked to the practice of caloric restriction, encompassing Insulin-like Growth Factor 1 (IGF1), Mammalian Target of Rapamycin (mTOR), the Adenosine Monophosphate-Activated Protein Kinase (AMPK) pathway, and Sirtuins, with particular emphasis on SIRT1. Therefore, this review will center its focus on several compounds that act as CRMs, highlighting their molecular targets, chemical structures, and mechanisms of action. Moreover, this review serves to underscore the significant relationship between post COVID-19 syndrome, antiaging, and importance of utilizing CRMs. This particular endeavor will serve as a comprehensive guide for medicinal chemists and other esteemed researchers, enabling them to meticulously conceive and cultivate novel molecular entities with the potential to function as efficacious antiaging pharmaceutical agents.


Assuntos
Restrição Calórica , Sirtuínas , Animais , Humanos , Síndrome de COVID-19 Pós-Aguda , Envelhecimento/metabolismo , Longevidade/fisiologia , Sirtuínas/metabolismo , Mamíferos/metabolismo
2.
Arab J Chem ; 16(7): 104813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36969951

RESUMO

The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has opened the door to potential threats of the respiratory system. The discovery of drugs from natural sources is one of the most important strategies for treating the upper respiratory tract. In this study, we investigated the selected formulated EOs activities against Gram-negative (E. coli, K. pneumonia, and P. aeruginosa) and Gram-positive (S. aureus, E. fecalis) bacteria and against the SARS-CoV-2 virus, with the mode of action investigated as anti-SARS-CoV-2. Cinnamomum zeylanicum and Syzygium aromaticum EOs were the most promising antibacterial oils. C. zeylanicum EO showed MIC values of 1, 1, 2, ≤0.5, and 8 µg/mL against E. coli, K. pneumoniae, P. aeruginosa, S. aureus, and E. fecalis, respectively, while S. aromaticum EO showed MIC values of 8, 4, 32, 8, 32 µg/mL against the same organisms. The cytotoxic activity of the oil samples was tested in VERO-E6 cells using (MTT) assay and showed that the safest oil was F. vulgare, then L. nobilis, C. carvi, S. aromaticum, and E. globulus. The most potent antiviral EOs were C. zeylanicum oil and S. aromaticum, with IC50 value of 15.16 and 96.5 µg/mL, respectively. Moreover, the safety index of S. aromaticum EO (26.3) was greater than the oil of C. zeylanicum (7.25). The mechanism by which C. zeylanicum oil exerts its antiviral activity may involve both the virucidal effect and its impact on viral reproduction. The nano-emulsion dosage form of the potent EOs was prepared and re-examined against the same bacterial and viral strains. Finally, the chemical characterization of these promising essential oils was analyzed and identified using the GC-MS approach. To the best of our knowledge, this is the first report concerning the in vitro investigation of anti-SARS-CoV-2 activity of these selected essential oils, along with a proposed mechanism for the potent oil's activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA