Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7188, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531917

RESUMO

The knowledge of proper fertigation across various irrigation levels is necessary for maximizing peanut yield and irrigation use efficiency in arid areas, and it also can effectively alleviate the risk of nutrient deficiency induced by water stress. This study evaluated the effectiveness of cobalt combined with two zinc application methods on peanut nutrient uptake, yield, and irrigation water use efficiency across varying irrigation levels. A split-split plot experiment was carried out in 2021 and 2022. Three peanut gross water requirement (GWR) levels (100%, 80%, and 60%) were designated for main plots. Subplots featured plants treated with either 0 or 7.5 mg L-1 of cobalt. The sub-sub plots assessed chelated zinc effects at rates of 0 and 2 g L-1 via foliar and soil applications. In comparison to the control (100% GWR), nutrient uptake decreased, with sodium being the exception, and there was an increase in soil pH at 60% GWR. The results showed also significant reductions in yield and water use by approximately 60.3% and 38.1%, respectively. At this irrigation level, applying zinc via soil, either alone or combined with cobalt, led to significant yield increases of 89.7% and 191.3% relative to the control. Also, it's crucial to note that cobalt application negatively affected iron and copper at 60% GWR, but this impact was lessened with soil-applied zinc. Hence, under a similar circumstance, treating stressed peanut plants with additional foliar applications of iron + copper and applying zinc via soil, could enhance nutrient uptake and improve yield. On the other hand, at 80% GWR, a combination of foliar-applied zinc and cobalt, had a tremendous impact on the absorption of (nitrogen, phosphorus, magnesium, and zinc), resulting in enhanced agronomic traits and decreased water losses. Additionally, at this irrigation level, foliar zinc application alone yielded a 32.4% increase compared to the 80% GWR control. When combined with cobalt, there was a 70.0% surge in water use. Based on this knowledge, the study suggests using 80% GWR and treating peanut plants with a combination of foliar-applied zinc and cobalt. This strategy aids plants in countering the adverse effects of water stress, ultimately leading to enhanced yield and irrigation water use efficiency.


Assuntos
Arachis , Zinco , Desidratação , Cobre , Solo , Nutrientes , Ferro , Irrigação Agrícola
2.
Sci Rep ; 13(1): 14260, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653028

RESUMO

Water stress poses a significant challenge for carrot cultivation, leading to decreased yield and inefficient water use efficiency. Therefore, it is crucial to provide plants with suitable supplements that enhance their stress resistance. In this study, we investigated the effectiveness of humic and potassium applications on carrot growth, yield characteristics, root quality, and water use efficiency under varying irrigation levels. A split-split plot experiment was conducted, with two levels of gross water requirements (GWR) (100% and 80%) assigned to the main plots. The subplots were treated with humic acid through foliar application (Hsp) or soil drenching (Hgd). The sub-subplots were further divided to assess the impact of foliar potassium sources (potassium humate, Kh) and mineral applications (potassium sulfate, K2SO4). The results revealed a substantial reduction in carrot yield under limited irrigation, reaching about 32.2% lower than under GWR100%. Therefore, under limited irrigation conditions, the combined application of Hgd and K2SO4 resulted in a significant yield increase of 78.9% compared to the control under GWR80%. Conversely, under GWR100%, the highest average yield was achieved by applying either Hsp and Kh or Hsp and K2SO4, resulting in yields of 35,833 kg ha-1 and 40,183 kg ha-1, respectively. However, the combination of Hgd and Kh negatively affected the yield under both GWR100% and GWR80%. Nonetheless, applying Kh in combination with Hgd under GWR80% led to improved nitrogen, phosphorus, potassium, potassium/sodium ratio, and total sugar concentrations, while reducing sodium content in carrot roots. Based on this study, it is recommended to adopt GWR80% and treat plants with a combination of Hgd and foliar K2SO4. This approach can help plants overcome the negative effects of water stress, improve yield and root quality, and achieve optimal water use efficiency.


Assuntos
Daucus carota , Potássio , Desidratação , Sódio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA