Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Immunol Rev ; 313(1): 320-326, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200881

RESUMO

The model of the solid organ as a target for circulating complement deposited at the site of injury, for many years concealed the broader influence of complement in organ transplantation. The study of locally synthesized complement especially in transplantation cast new light on complement's wider participation in ischaemia-reperfusion injury, the presentation of donor antigen and finally rejection. The lack of clarity, however, has persisted as to which complement activation pathways are involved and how they are triggered, and above all whether the distinction is relevant. In transplantation, the need for clarity is heightened by the quest for precision therapies in patients who are already receiving potent immunosuppressives, and because of the opportunity for well-timed intervention. This review will present new evidence for the emerging role of the lectin pathway, weighed alongside the longer established role of the alternative pathway as an amplifier of the complement system, and against contributions from the classical pathway. It is hoped this understanding will contribute to the debate on precisely targeted versus broadly acting therapeutic innovation within the aim to achieve safe long term graft acceptance.


Assuntos
Proteínas do Sistema Complemento , Traumatismo por Reperfusão , Humanos , Proteínas do Sistema Complemento/metabolismo , Traumatismo por Reperfusão/metabolismo , Ativação do Complemento , Rejeição de Enxerto
2.
FASEB J ; 34(1): 822-834, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914693

RESUMO

In a recent study, we identified a fucosylated damage-associated ligand exposed by ischemia on renal tubule epithelial cells, which after recognition by collectin-11 (CL-11 or collectin kidney 1 (CL-K1)), initiates complement activation and acute kidney injury. We exploited the ability to increase the local tissue concentration of free l-fucose following systemic administration, in order to block ligand binding by local CL-11 and prevent complement activation. We achieved a thirty-five-fold increase in the intrarenal concentration of l-fucose following an IP bolus given before the ischemia induction procedure - a concentration found to significantly block in vitro binding of CL-11 on hypoxia-stressed renal tubule cells. At this l-fucose dose, complement activation and acute post-ischemic kidney injury are prevented, with additional protection achieved by a second bolus after the induction procedure. CL-11-/- mice gained no additional protection from l-fucose administration, indicating that the mechanism of l-fucose therapy was largely CL-11-dependent. The hypothesis is that a high dose of l-fucose delivered to the kidney obstructs the carbohydrate recognition site on CL-11 thereby reducing complement-mediated damage following ischemic insult. Further work will examine the utility in preventing post-ischemic injury during renal transplantation, where acute kidney injury is known to correlate with poor graft survival.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Fucose/farmacocinética , Isquemia/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Proteínas do Sistema Complemento/efeitos dos fármacos , Proteínas do Sistema Complemento/metabolismo , Fucose/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Isquemia/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Transplante de Rim/métodos , Camundongos Knockout , Traumatismo por Reperfusão/metabolismo
3.
Pediatr Nephrol ; 36(5): 1065-1073, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32472330

RESUMO

Ischaemia/reperfusion injury (IRI) is an inevitable and damaging consequence of the process of kidney transplantation, ultimately leading to delayed graft function and increased risk of graft loss. A key driver of this adverse reaction in kidneys is activation of the complement system, an important part of the innate immune system. This activation causes deposition of complement C3 on renal tubules as well as infiltration of immune cells and ultimately damage to the tubules resulting in reduced kidney function. Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement. CL-11 binds to a ligand that is exposed on the renal tubules by the stress caused by IRI, and through attached proteases, CL-11 activates complement and this contributes to the consequences outlined above. Recent work in our lab has shown that this damage-associated ligand contains a fucose residue that aids CL-11 binding and promotes complement activation. In this review, we will discuss the clinical context of renal transplantation, the relevance of the complement system in IRI, and outline the evidence for the role of CL-11 binding to a fucosylated ligand in IRI as well as its downstream effects. Finally, we will detail the simple but elegant theory that increasing the level of free fucose in the kidney acts as a decoy molecule, greatly reducing the clinical consequences of IRI mediated by CL-11.


Assuntos
Colectinas/metabolismo , Fucose/metabolismo , Transplante de Rim , Traumatismo por Reperfusão , Humanos , Rim , Transplante de Rim/efeitos adversos , Ligantes , Traumatismo por Reperfusão/etiologia
4.
J Am Soc Nephrol ; 28(9): 2571-2578, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28663231

RESUMO

The complement system, consisting of soluble and cell membrane-bound components of the innate immune system, has defined roles in the pathophysiology of renal allograft rejection. Notably, the unavoidable ischemia-reperfusion injury inherent to transplantation is mediated through the terminal complement activation products C5a and C5b-9. Furthermore, biologically active fragments C3a and C5a, produced during complement activation, can modulate both antigen presentation and T cell priming, ultimately leading to allograft rejection. Earlier work identified renal tubule cell synthesis of C3, rather than hepatic synthesis of C3, as the primary source of C3 driving these effects. Recent efforts have focused on identifying the local triggers of complement activation. Collectin-11, a soluble C-type lectin expressed in renal tissue, has been implicated as an important trigger of complement activation in renal tissue. In particular, collectin-11 has been shown to engage L-fucose at sites of ischemic stress, activating the lectin complement pathway and directing the innate immune response to the distressed renal tubule. The interface between collectin-11 and L-fucose, in both the recipient and the allograft, is an attractive target for therapies intended to curtail renal inflammation in the acute phase.


Assuntos
Proteínas do Sistema Complemento/imunologia , Rejeição de Enxerto/imunologia , Transplante de Rim , Lectinas/imunologia , Traumatismo por Reperfusão/imunologia , Imunidade Adaptativa , Animais , Colectinas/imunologia , Colectinas/metabolismo , Via Clássica do Complemento , Proteínas do Sistema Complemento/metabolismo , Humanos , Lectinas/metabolismo , Lectina de Ligação a Manose/imunologia , Lectina de Ligação a Manose/metabolismo
5.
Am Surg ; 88(5): 1014-1015, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34964692

RESUMO

We describe the management of bullet embolism from a penetrating cardiac injury, including the clinical, radiographic, and operative considerations in this challenging trauma scenario. Bullet embolism represents a rare but complex subset of ballistic penetrating trauma, and highlights the importance of radiographic correlation with intraoperative findings.


Assuntos
Embolia/etiologia , Traumatismos Cardíacos/complicações , Artéria Ilíaca , Ferimentos por Arma de Fogo/complicações , Aorta Abdominal , Embolia/diagnóstico por imagem , Embolia/cirurgia , Traumatismos Cardíacos/diagnóstico por imagem , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/cirurgia , Humanos , Artéria Ilíaca/diagnóstico por imagem , Ferimentos por Arma de Fogo/diagnóstico por imagem , Ferimentos por Arma de Fogo/cirurgia
6.
Semin Immunopathol ; 43(6): 789-797, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757496

RESUMO

Until recently, the only known condition in which complement could mediate transplant injury was the rare occurrence of antibody-mediated rejection, in which the original concept of antibody immunity against the transplant was supported by complementary proteins present in the serum. This has changed within the last two decades because of evidence that the processes of ischaemia-reperfusion injury followed by T cell-mediated rejection are also critically dependent on components generated by the complement system. We now have a clearer understanding of the complement triggers and effectors that mediate injury, and a detailed map of their local sites of production and activation in the kidney. This is providing helpful guidelines as to how these harmful processes that restrict transplant outcomes can be targeted for therapeutic benefit. Here we review some of the recent advances highlighting relevant therapeutic targets.


Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Ativação do Complemento , Proteínas do Sistema Complemento , Rejeição de Enxerto , Humanos , Transplante de Rim/efeitos adversos , Traumatismo por Reperfusão/etiologia
8.
Front Immunol ; 9: 2023, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30237800

RESUMO

The complement system is a dynamic subset of the innate immune system, playing roles in host defense, clearance of immune complexes and cell debris, and priming the adaptive immune response. Over the last 40 years our understanding of the complement system has evolved from identifying its presence and recognizing its role in the blood to now focusing on understanding the role of local complement synthesis in health and disease. In particular, the local synthesis of complement was found to have an involvement in mediating ischaemic injury, including following transplantation. Recent work on elucidating the triggers of local complement synthesis and activation in renal tissue have led to the finding that Collectin-11 (CL-11) engages with L-fucose at the site of ischaemic stress, namely at the surface of the proximal tubular epithelial cells. What remains unknown is the precise structure of the damage-associated ligand that participates in CL-11 binding and subsequent complement activation. In this article, we will discuss our hypothesis regarding the role of CL-11 as an integral tissue-based pattern recognition molecule which we postulate has a significant contributory role in complement-mediated ischaemic injury.


Assuntos
Colectinas/metabolismo , Células Epiteliais/fisiologia , Isquemia/imunologia , Transplante de Rim , Rim/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Humanos , Rim/patologia
10.
J Chromatogr A ; 1218(51): 9244-9, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22098929

RESUMO

An application of ion exchange chromatography for C-peptide analysis is described here. At the stage of C-peptide isolation, a strong cation exchanger (SP HP or MonoS) was used to purify the analyte from ballast proteins and peptides. The conditions of ion-exchange chromatographic separations were optimized using theoretical modeling of the net surface electric charge of the peptide as a function of pH. The purified and concentrated sample was further subjected to LC-MS/MS. In order to improve the reliability of analysis, two fragment ions were monitored simultaneously both for native C-peptide and internal standard, isotopically labeled C-peptides analogues (fragments with m/z of 927.7 and 147.2). Using ion-exchange chromatography, it became possible to process larger sample volumes, important for testing patients with very low C peptide levels, compared to currently used solid phase extraction methods.


Assuntos
Peptídeo C/química , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Peptídeo C/sangue , Cátions , Eletricidade , Humanos , Concentração de Íons de Hidrogênio , Modelos Lineares , Metanol , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA