Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 50(8): 1099-1107, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851940

RESUMO

OBJECTIVE: Ultrasound-triggered bubble-mediated local drug delivery has shown potential to increase therapeutic efficacy and reduce systemic side effects, by loading drugs into the microbubble shell and triggering delivery of the payload on demand using ultrasound. Understanding the behavior of the microbubbles in response to ultrasound is crucial for efficient and controlled release. METHODS: In this work, the response of microbubbles with a coating consisting of poly(2-ethyl-butyl cyanoacrylate) (PEBCA) nanoparticles and denatured casein was characterized. High-speed recordings were taken of single microbubbles, in both bright field and fluorescence. RESULTS: The nanoparticle-loaded microbubbles show resonance behavior, but with a large variation in response, revealing a substantial interbubble variation in mechanical shell properties. The probability of shell rupture and the probability of nanoparticle release were found to strongly depend on microbubble size, and the most effective size was inversely proportional to the driving frequency. The probabilities of both rupture and release increased with increasing driving pressure amplitude. Rupture of the microbubble shell occurred after fewer cycles of ultrasound as the driving pressure amplitude or driving frequency was increased. CONCLUSION: The results highlight the importance of careful selection of the driving frequency, driving pressure amplitude and duration of ultrasound to achieve the most efficient ultrasound-triggered shell rupture and nanoparticle release of protein-and-nanoparticle-stabilized microbubbles.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Nanopartículas , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Embucrilato/química , Caseínas/química , Proteínas/química
2.
J Vis Exp ; (172)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34180885

RESUMO

Microbubble contrast agents hold great promise for drug delivery applications with ultrasound. Encapsulating drugs in nanoparticles reduces systemic toxicity and increases circulation time of the drugs. In a novel approach to microbubble-assisted drug delivery, nanoparticles are incorporated in or on microbubble shells, enabling local and triggered release of the nanoparticle payload with ultrasound. A thorough understanding of the release mechanisms within the vast ultrasound parameter space is crucial for efficient and controlled release. This set of presented protocols is applicable to microbubbles with a shell containing a fluorescent label. Here, the focus is on microbubbles loaded with poly(2-ethyl-butyl cyanoacrylate) polymeric nanoparticles, doped with a modified Nile Red dye. The particles are fixed within a denatured casein shell. The microbubbles are produced by vigorous stirring, forming a dispersion of perfluoropropane gas in the liquid phase containing casein and nanoparticles, after which the microbubble shell self-assembles. A variety of microscopy techniques are needed to characterize the nanoparticle-stabilized microbubbles at all relevant timescales of the nanoparticle release process. Fluorescence of the nanoparticles enables confocal imaging of single microbubbles, revealing the particle distribution within the shell. In vitro ultra-high-speed imaging using bright-field microscopy at 10 million frames per second provides insight into the bubble dynamics in response to ultrasound insonation. Finally, nanoparticle release from the bubble shell is best visualized by means of fluorescence microscopy, performed at 500,000 frames per second. To characterize drug delivery in vivo, the triggered release of nanoparticles within the vasculature and their extravasation beyond the endothelial layer is studied using intravital microscopy in tumors implanted in dorsal skinfold window chambers, over a timescale of several minutes. The combination of these complementary characterization techniques provides unique insight into the behavior of microbubbles and their payload release at a range of time and length scales, both in vitro and in vivo.


Assuntos
Microbolhas , Nanopartículas , Meios de Contraste , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA