Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RNA Biol ; 10(4): 516-27, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23411391

RESUMO

Accurate 3'end processing depends on the correct recognition of polyadenylation regulatory elements by specific protein complexes. In addition to the well-known hexanucleotide motif and downstream sequence element (DSE), less-defined auxiliary elements are usually found to modulate cleavage and polyadenylation. They are generally located in close proximity to the core polyadenylation elements but, in most of the cases, the molecular mechanisms involved are not well defined. We concentrated our studies on the regulation of the mouse ß adducin (Add2) pre-mRNA cleavage and polyadenylation. It contains two proximal erythroid-specific (PAS1 and PAS2-3) and one distal brain-specific (PAS4) polyadenylation sites along the 3'UTR. Using an in vivo approach based in the transfection of minigenes containing the Add2 polyadenylation signals, we previously identified the core regulatory elements responsible for PAS4 activity. Here, we have identified two novel non-canonical cis-acting elements regulating 3'end processing at PAS4, which show long-distance activities. The first of these elements, which spans for 257 nucleotides and is located at more than 5 kb upstream the PAS4, was essential to enable processing at the Add2 PAS4. The second element, located at about 4.5 kb upstream of the PAS4, reduces PAS4 processing. Both elements display long-distance activities and, to our knowledge, long-distance upstream polyadenylation regulatory elements have not been previously described in non-viral eukaryotic transcripts. These results highlight the complexity of the regulatory mechanisms directing Add2 pre-mRNA 3'end processing, and suggests that pre-mRNA 3' end processing of other genes may also be unexpectedly regulated by non-canonical auxiliary elements.


Assuntos
Regulação da Expressão Gênica , Proteínas dos Microfilamentos/genética , Processamento de Terminações 3' de RNA , Clivagem do RNA , Precursores de RNA/genética , Animais , Proteínas do Citoesqueleto , Elementos Facilitadores Genéticos , Células HeLa , Humanos , Camundongos , Proteínas dos Microfilamentos/metabolismo , Poliadenilação , Biossíntese de Proteínas , Precursores de RNA/metabolismo , Elementos Silenciadores Transcricionais , Transfecção
2.
Basic Clin Pharmacol Toxicol ; 98(2): 173-80, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16445591

RESUMO

The development of effective antidotes against organophosphates such as dichlorvos has been a persistent challenge over the past decades. Therapy of organophosphate poisoning is based on the administration of atropine and oxime as standard antidotes. The present study was undertaken to evaluate the ability of sodium bicarbonate to improve protective effects of standard antidotes in rats poisoned with dichlorvos. The aim of this experiment was to establish the correlation between protective effects and biochemical parameters relevant for acid-base status. In order to examine the protective effect of both standard antidotes and their combinations, groups of experimental animals were poisoned subcutaneously with increasing doses of dichlorvos. Immediately thereafter, rats were treated with atropine 10 mg/kg intramuscularly, oximes 10 mg/kg intramuscularly and sodium bicarbonate 3 mmol/kg intraperitoneally. These antidotes were administered either as single doses or in combinations. In the biochemical part of the experiments, rats were poisoned with dichlorvos 1.3 LD(50) (10.64 mg/kg) subcutaneously and immediately thereafter treated with atropine 10 mg/kg intramuscularly, oximes (trimedoxime or obidoxime) 10 mg/kg intramuscularly and sodium bicarbonate 3 mmol/kg intraperitoneally either as single doses or in combinations. Parameters relevant for acid-base status were measured 10 minutes after the administration of antidotes. The results of our study indicate that addition of sodium bicarbonate to standard antidotes significantly improves protective effects of atropine, obidoxime and trimedoxime. Correlation between protection and biochemical outcome is clearly evident when sodium bicarbonate is being added to atropine.


Assuntos
Antídotos/farmacologia , Inibidores da Colinesterase/intoxicação , Diclorvós/intoxicação , Bicarbonato de Sódio/farmacologia , Acidose/tratamento farmacológico , Animais , Atropina/farmacologia , Gasometria , Reativadores da Colinesterase/farmacologia , Sinergismo Farmacológico , Masculino , Cloreto de Obidoxima/farmacologia , Ratos , Ratos Wistar , Trimedoxima/farmacologia
3.
Basic Clin Pharmacol Toxicol ; 96(2): 111-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15679473

RESUMO

The aim of the study was to examine antidotal potency of trimedoxime in mice poisoned with three direct dimethoxy-substituted organophosphorus inhibitors. In order to assess the protective efficacy of trimedoxime against dichlorvos, heptenophos or monocrotophos, median effective doses and efficacy half-times were calculated. Trimedoxime (24 mg/kg intravenously) was injected 5 min. before 1.3 LD50 intravenously of poisons. Activities of brain, diaphragmal and erythrocyte acetylcholinesterase, as well as of plasma carboxylesterases were determined at different time intervals (10, 40 and 60 min.) after administration of the antidotes. Protective effect of trimedoxime decreased according to the following order: monocrotophos > heptenophos > dichlorvos. Administration of the oxime produced a significant reactivation of central and peripheral acetylcholinesterase inhibited with dichlorvos and heptenophos, with the exception of erythrocyte acetylcholinesterase inhibited by heptenophos. Surprisingly, trimedoxime did not induce reactivation of monocrotophos-inhibited acetylcholinesterase in any of the tissues tested. These organophosphorus compounds produced a significant inhibition of plasma carboxylesterase activity, while administration of trimedoxime led to regeneration of the enzyme activity. The same dose of trimedoxime assured survival of experimental animals poisoned by all three organophosphorus compounds, although the biochemical findings were quite different.


Assuntos
Diclorvós/intoxicação , Monocrotofós/intoxicação , Intoxicação por Organofosfatos , Trimedoxima/uso terapêutico , Acetilcolina/química , Acetilcolina/metabolismo , Animais , Química Encefálica/efeitos dos fármacos , Carboxilesterase/antagonistas & inibidores , Carboxilesterase/sangue , Carboxilesterase/efeitos dos fármacos , Diafragma/efeitos dos fármacos , Diafragma/fisiologia , Diclorvós/administração & dosagem , Diclorvós/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Injeções Intravenosas , Dose Letal Mediana , Masculino , Camundongos , Monocrotofós/administração & dosagem , Monocrotofós/antagonistas & inibidores , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/antagonistas & inibidores , Oximas/administração & dosagem , Oximas/farmacologia , Oximas/uso terapêutico , Fatores de Tempo , Trimedoxima/administração & dosagem , Trimedoxima/farmacocinética
4.
PLoS One ; 8(3): e58879, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554949

RESUMO

Most genes have multiple polyadenylation sites (PAS), which are often selected in a tissue-specific manner, altering protein products and affecting mRNA stability, subcellular localization and/or translability. Here we studied the polyadenylation mechanisms associated to the beta-adducin gene (Add2). We have previously shown that the Add2 gene has a very tight regulation of alternative polyadenylation, using proximal PAS in erythroid tissues, and a distal one in brain. Using chimeric minigenes and cell transfections we identified the core elements responsible for polyadenylation at the distal PAS. Deletion of either the hexanucleotide motif (Hm) or the downstream element (DSE) resulted in reduction of mature mRNA levels and activation of cryptic PAS, suggesting an important role for the DSE in polyadenylation of the distal Add2 PAS. Point mutation of the UG repeats present in the DSE, located immediately after the cleavage site, resulted in a reduction of processed mRNA and in the activation of the same cryptic site. RNA-EMSA showed that this region is active in forming RNA-protein complexes. Competition experiments showed that RNA lacking the DSE was not able to compete the RNA-protein complexes, supporting the hypothesis of an essential important role for the DSE. Next, using a RNA-pull down approach we identified some of the proteins bound to the DSE. Among these proteins we found PTB, TDP-43, FBP1 and FBP2, nucleolin, RNA helicase A and vigilin. All these proteins have a role in RNA metabolism, but only PTB has a reported function in polyadenylation. Additional experiments are needed to determine the precise functional role of these proteins in Add2 polyadenylation.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Poliadenilação , Precursores de RNA/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Ordem dos Genes , Humanos , Mutação , Motivos de Nucleotídeos , Poli A , Ligação Proteica , Processamento Pós-Transcricional do RNA , Sequências Reguladoras de Ácido Nucleico , Transativadores/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA