Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Brain ; 147(4): 1344-1361, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37931066

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-ß, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.


Assuntos
Neuromielite Óptica , Humanos , Animais , Camundongos , Neuromielite Óptica/patologia , Aquaporina 4 , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos B , Autoanticorpos/metabolismo
2.
J Immunol ; 209(3): 465-475, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35725270

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease characterized by T and B cell responses to proteins expressed by insulin-producing pancreatic ß cells, inflammatory lesions within islets (insulitis), and ß cell loss. We previously showed that Ag-specific tolerance targeting single ß cell protein epitopes is effective in preventing T1D induced by transfer of monospecific diabetogenic CD4 and CD8 transgenic T cells to NOD.scid mice. However, tolerance induction to individual diabetogenic proteins, for example, GAD65 (glutamic acid decarboxylase 65) or insulin, has failed to ameliorate T1D both in wild-type NOD mice and in the clinic. Initiation and progression of T1D is likely due to activation of T cells specific for multiple diabetogenic epitopes. To test this hypothesis, recombinant insulin, GAD65, and chromogranin A proteins were encapsulated within poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (COUR CNPs) to assess regulatory T cell induction, inhibition of Ag-specific T cell responses, and blockade of T1D induction/progression in NOD mice. Whereas treatment of NOD mice with CNPs containing a single protein inhibited the corresponding Ag-specific T cell response, inhibition of overt T1D development only occurred when all three diabetogenic proteins were included within the CNPs (CNP-T1D). Blockade of T1D following CNP-T1D tolerization was characterized by regulatory T cell induction and a significant decrease in both peri-insulitis and immune cell infiltration into pancreatic islets. As we have recently published that CNP treatment is both safe and induced Ag-specific tolerance in a phase 1/2a celiac disease clinical trial, Ag-specific tolerance induced by nanoparticles encapsulating multiple diabetogenic proteins is a promising approach to T1D treatment.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Nanopartículas , Animais , Diabetes Mellitus Experimental/patologia , Epitopos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas
3.
J Immunol ; 203(1): 48-57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109955

RESUMO

CD4 T cells play a critical role in promoting the development of autoimmunity in type 1 diabetes. The diabetogenic CD4 T cell clone BDC-2.5, originally isolated from a NOD mouse, has been widely used to study the contribution of autoreactive CD4 T cells and relevant Ags to autoimmune diabetes. Recent work from our laboratory has shown that the Ag for BDC-2.5 T cells is a hybrid insulin peptide (2.5HIP) consisting of an insulin C-peptide fragment fused to a peptide from chromogranin A (ChgA) and that endogenous 2.5HIP-reactive T cells are major contributors to autoimmune pathology in NOD mice. The objective of this study was to determine if poly(lactide-co-glycolide) (PLG) nanoparticles (NPs) loaded with the 2.5HIP Ag (2.5HIP-coupled PLG NPs) can tolerize BDC-2.5 T cells. Infusion of 2.5HIP-coupled PLG NPs was found to prevent diabetes in an adoptive transfer model by impairing the ability of BDC-2.5 T cells to produce proinflammatory cytokines through induction of anergy, leading to an increase in the ratio of Foxp3+ regulatory T cells to IFN-γ+ effector T cells. To our knowledge, this work is the first to use a hybrid insulin peptide, or any neoepitope, to re-educate diabetogenic T cells and may have significant implications for the development of an Ag-specific therapy for type 1 diabetes patients.


Assuntos
Cromogranina A/metabolismo , Diabetes Mellitus Tipo 1/terapia , Imunoterapia/métodos , Insulina/metabolismo , Nanopartículas/uso terapêutico , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Animais Geneticamente Modificados , Células Cultivadas , Cromogranina A/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Tolerância Imunológica , Insulina/genética , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/metabolismo , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética
4.
Proc Natl Acad Sci U S A ; 113(18): 5059-64, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091976

RESUMO

Specific immunotherapy (SIT) is the most widely used treatment for allergic diseases that directly targets the T helper 2 (Th2) bias underlying allergy. However, the most widespread clinical applications of SIT require a long period of dose escalation with soluble antigen (Ag) and carry a significant risk of adverse reactions, particularly in highly sensitized patients who stand to benefit most from a curative treatment. Thus, the development of safer, more efficient methods to induce Ag-specific immune tolerance is critical to advancing allergy treatment. We hypothesized that antigen-associated nanoparticles (Ag-NPs), which we have used to prevent and treat Th1/Th17-mediated autoimmune disease, would also be effective for the induction of tolerance in a murine model of Th2-mediated ovalbumin/alum-induced allergic airway inflammation. We demonstrate here that antigen-conjugated polystyrene (Ag-PS) NPs, although effective for the prophylactic induction of tolerance, induce anaphylaxis in presensitized mice. Antigen-conjugated NPs made of biodegradable poly(lactide-co-glycolide) (Ag-PLG) are similarly effective prophylactically, are well tolerated by sensitized animals, but only partially inhibit Th2 responses when administered therapeutically. PLG NPs containing encapsulated antigen [PLG(Ag)], however, were well tolerated and effectively inhibited Th2 responses and airway inflammation both prophylactically and therapeutically. Thus, we illustrate progression toward PLG(Ag) as a biodegradable Ag carrier platform for the safe and effective inhibition of allergic airway inflammation without the need for nonspecific immunosuppression in animals with established Th2 sensitization.


Assuntos
Antígenos/administração & dosagem , Antígenos/imunologia , Asma/imunologia , Asma/terapia , Implantes de Medicamento/administração & dosagem , Nanocápsulas/administração & dosagem , Células Th2/imunologia , Implantes Absorvíveis , Animais , Asma/diagnóstico , Feminino , Imunização/métodos , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Poliglactina 910/administração & dosagem , Poliglactina 910/química , Células Th2/efeitos dos fármacos , Resultado do Tratamento
5.
J Autoimmun ; 89: 112-124, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29258717

RESUMO

Type 1 diabetes (T1D) is mediated by destruction of pancreatic ß cells by autoantigen-specific CD4+ and CD8+ T cells, thus the ideal solution for T1D is the restoration of immune tolerance to ß cell antigens. We demonstrate the ability of carboxylated 500 nm biodegradable poly(lactide-co-glycolide) (PLG) nanoparticles PLG nanoparticles (either surface coupled with or encapsulating the cognate diabetogenic peptides) to rapidly and efficiently restore tolerance in NOD.SCID recipients of both activated diabetogenic CD4+ BDC2.5 chromagranin A-specific and CD8+ NY8.3 islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific TCR transgenic T cells in an antigen-specific manner. Further, initiation and maintenance of Ag-PLG tolerance operates via several overlapping, but independent, pathways including regulation via negative-co-stimulatory molecules (CTLA-4 and PD-1) and the systemic induction of peptide-specific Tregs which were critical for long-term maintenance of tolerance by controlling both trafficking of effector T cells to, and their release of pro-inflammatory cytokines within the pancreas, concomitant with selective retention of effector cells in the spleens of recipient mice.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Células Secretoras de Insulina/patologia , Nanopartículas/uso terapêutico , Animais , Autoantígenos/química , Autoantígenos/imunologia , Células Cultivadas , Diabetes Mellitus Tipo 1/terapia , Modelos Animais de Doenças , Feminino , Glucose-6-Fosfatase/química , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/imunologia , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Nanopartículas/química , Peptídeos/química , Peptídeos/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores de Antígenos de Linfócitos T alfa-beta/genética
6.
Curr Diab Rep ; 17(10): 84, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28791576

RESUMO

PURPOSE OF REVIEW: The current standard therapy for type 1 diabetes (T1D) is insulin replacement. Autoimmune diseases are typically treated with broad immunosuppression, but this has multiple disadvantages. Induction of antigen-specific tolerance is preferable. The application of nanomedicine to the problem of T1D can take different forms, but one promising way is the development of tolerogenic nanoparticles, the aim of which is to mitigate the islet-destroying autoimmunity. We review the topic and highlight recent strategies to produce tolerogenic nanoparticles for the purpose of treating T1D. RECENT FINDINGS: Several groups are making progress in applying tolerogenic nanoparticles to rodent models of T1D, while others are using nanotechnology to aid other potential T1D treatments such as islet transplant and islet encapsulation. The strategies behind how nanoparticles achieve tolerance are varied. It is likely the future will see even greater diversity in tolerance induction strategies as well as a greater focus on how to translate this technology from preclinical use in mice to treatment of T1D in humans.


Assuntos
Autoimunidade , Tolerância Imunológica , Ilhotas Pancreáticas/imunologia , Nanopartículas/uso terapêutico , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Humanos
7.
Nanomedicine ; 11(7): 1705-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26051652

RESUMO

Successful vaccine development remains a huge challenge for infectious diseases such as malaria, HIV and influenza. As a novel way to present antigenic epitopes to the immune system, we have developed icosahedral self-assembling protein nanoparticles (SAPNs) to serve as a prototypical vaccine platform for infectious diseases. Here we examine some biophysical factors that affect the self-assembly of these nanoparticles, which have as basic building blocks coiled-coil oligomerization domains joined by a short linker region. Relying on in silico computer modeling predictions, we selected five different linker regions from the RCSB protein database that connect oligomerization domains, and then further studied the self-assembly and stability of in vitro produced nanoparticles through biophysical characterization of formed particles. One design in particular, T2i88, revealed excellent self-assembly and homogeneity thus paving the way toward a more optimized nanoparticle for vaccine applications. FROM THE CLINICAL EDITOR: Despite the widespread use of vaccines worldwide, successful development of vaccines against some diseases remains a challenge still. In this article, the authors investigated the physic-chemical and biological properties of icosahedral self-assembling protein nanoparticles (SAPNs), which mimic viral particles, in order to utilize this technology as potential platform for future design of vaccines.


Assuntos
Nanopartículas/uso terapêutico , Proteínas/imunologia , Vacinas/imunologia , Simulação por Computador , Bases de Dados de Proteínas , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Malária/imunologia , Malária/prevenção & controle , Proteínas/química , Proteínas/uso terapêutico , Vacinas/uso terapêutico
8.
J Nanobiotechnology ; 11: 36, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24219600

RESUMO

BACKGROUND: Because of the need to limit side-effects, nanoparticles are increasingly being studied as drug-carrying and targeting tools. We have previously reported on a scheme to produce protein-based self-assembling nanoparticles that can act as antigen display platforms. Here we attempted to use the same system for cancer-targeting, making use of a C-terminal bombesin peptide that has high affinity for a receptor known to be overexpressed in certain tumors, as well as an N-terminal polyhistidine tag that can be used for radiolabeling with technetium tricarbonyl. RESULTS: In order to increase circulation time, we experimented with PEGylated and unPEGylated varities typo particle. We also tested the effect of incorporating different numbers of bombesins per nanoparticle. Biophysical characterization determined that all configurations assemble into regular particles with relatively monodisperse size distributions, having peaks of about 33-36 nm. The carbonyl method used for labeling produced approximately 80% labeled nanoparticles. In vitro, the nanoparticles showed high binding, both specific and non-specific, to PC-3 prostate cancer cells. In vivo, high uptake was observed for all nanoparticle types in the spleens of CD-1 nu/nu mice, decreasing significantly over the course of 24 hours. High uptake was also observed in the liver, while only low uptake was seen in both the pancreas and a tumor xenograft. CONCLUSIONS: The data suggest that the nanoparticles are non-specifically taken up by the reticuloendothelial system. Low uptake in the pancreas and tumor indicate that there is little or no specific targeting. PEGylation or increasing the amount of bombesins per nanoparticle did not significantly improve targeting. In particular, the uptake in the spleen, which is a primary organ of the immune system, highlights the potential of the nanoparticles as vaccine carriers. Also, the decrease in liver and spleen radioactivity with time implies that the nanoparticles are broken down and cleared. This is an important finding, as it shows that the nanoparticles can be safely used as a vaccine platform without the risk of prolonged side effects. Furthermore, it demonstrates that technetium carbonyl radiolabeling of our protein-based nanoparticles can be used to evaluate their pharmacokinetic properties in vivo.


Assuntos
Bombesina/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Peptídeos/farmacocinética , Proteínas Recombinantes de Fusão/farmacocinética , Adenocarcinoma/imunologia , Adenocarcinoma/prevenção & controle , Sequência de Aminoácidos , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Feminino , Humanos , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Nanopartículas/metabolismo , Tamanho da Partícula , Peptídeos/síntese química , Polietilenoglicóis/química , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/prevenção & controle , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/síntese química , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Coloração e Rotulagem , Tecnécio , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Diabetes ; 71(3): 483-496, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007324

RESUMO

The induction of antigen (Ag)-specific tolerance and replacement of islet ß-cells are major ongoing goals for the treatment of type 1 diabetes (T1D). Our group previously showed that a hybrid insulin peptide (2.5HIP) is a critical autoantigen for diabetogenic CD4+ T cells in the NOD mouse model. In this study, we investigated whether induction of Ag-specific tolerance using 2.5HIP-coupled tolerogenic nanoparticles (NPs) could protect diabetic NOD mice from disease recurrence upon syngeneic islet transplantation. Islet graft survival was significantly prolonged in mice treated with 2.5HIP NPs, but not NPs containing the insulin B chain peptide 9-23. Protection in 2.5HIP NP-treated mice was attributed both to the simultaneous induction of anergy in 2.5HIP-specific effector T cells and the expansion of Foxp3+ regulatory T cells specific for the same Ag. Notably, our results indicate that effector function of graft-infiltrating CD4+ and CD8+ T cells specific for other ß-cell epitopes was significantly impaired, suggesting a novel mechanism of therapeutically induced linked suppression. This work establishes that tolerance induction with an HIP can delay recurrent autoimmunity in NOD mice, which could inform the development of an Ag-specific therapy for T1D.


Assuntos
Diabetes Mellitus Tipo 1/terapia , Sobrevivência de Enxerto/efeitos dos fármacos , Insulina/administração & dosagem , Transplante das Ilhotas Pancreáticas/métodos , Fragmentos de Peptídeos/administração & dosagem , Animais , Autoantígenos/imunologia , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Feminino , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Nanopartículas/administração & dosagem , Recidiva
10.
Front Immunol ; 13: 887649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059473

RESUMO

Cancer treatment utilizing infusion therapies to enhance the patient's own immune response against the tumor have shown significant functionality in a small subpopulation of patients. Additionally, advances have been made in the utilization of nanotechnology for the treatment of disease. We have previously reported the potent effects of 3-4 daily intravenous infusions of immune modifying poly(lactic-co-glycolic acid) (PLGA) nanoparticles (IMPs; named ONP-302) for the amelioration of acute inflammatory diseases by targeting myeloid cells. The present studies describe a novel use for ONP-302, employing an altered dosing scheme to reprogram myeloid cells resulting in significant enhancement of tumor immunity. ONP-302 infusion decreased tumor growth via the activation of the cGAS/STING pathway within myeloid cells, and subsequently increased NK cell activation via an IL-15-dependent mechanism. Additionally, ONP-302 treatment increased PD-1/PD-L1 expression in the tumor microenvironment, thereby allowing for functionality of anti-PD-1 for treatment in the B16.F10 melanoma tumor model which is normally unresponsive to monotherapy with anti-PD-1. These findings indicate that ONP-302 allows for tumor control via reprogramming myeloid cells via activation of the STING/IL-15/NK cell mechanism, as well as increasing anti-PD-1 response rates.


Assuntos
Melanoma Experimental , Nanopartículas , Animais , Humanos , Imunoterapia/métodos , Interleucina-15 , Melanoma Experimental/terapia , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Nucleotidiltransferases/metabolismo , Microambiente Tumoral
11.
Curr Opin Endocrinol Diabetes Obes ; 28(4): 404-410, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34101653

RESUMO

PURPOSE OF REVIEW: Current therapies for autoimmune disorders often employ broad suppression of the immune system. Antigen-specific immunotherapy (ASI) seeks to overcome the side-effects of immunosuppressive therapy by specifically targeting only disease-related autoreactive T and B cells. Although it has been in development for several decades, ASI still is not in use clinically to treat autoimmunity. Novel ways to deliver antigen may be effective in inducing ASI. Here we review recent innovations in antigen delivery. RECENT FINDINGS: New ways to deliver antigen include particle and nonparticle approaches. One main focus has been the targeting of antigen-presenting cells in a tolerogenic context. This technique often results in the induction and/or expansion of regulatory T cells, which has the potential to be effective against a complex, polyclonal immune response. SUMMARY: Whether novel delivery approaches can help bring ASI into general clinical use for therapy of autoimmune diseases remains to be seen. However, preclinical work and early results from clinical trials using these new techniques show promising signs.


Assuntos
Doenças Autoimunes , Tolerância Imunológica , Imunoterapia/métodos , Antígenos/administração & dosagem , Antígenos/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/imunologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Imunossupressores/efeitos adversos , Imunossupressores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
12.
Cells ; 10(12)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34943952

RESUMO

We have shown that PLG nanoparticles loaded with peptide antigen can reduce disease in animal models of autoimmunity and in a phase 1/2a clinical trial in celiac patients. Clarifying the mechanisms by which antigen-loaded nanoparticles establish tolerance is key to further adapting them to clinical use. The mechanisms underlying tolerance induction include the expansion of antigen-specific CD4+ regulatory T cells and sequestration of autoreactive cells in the spleen. In this study, we employed nanoparticles loaded with two model peptides, GP33-41 (a CD8 T cell epitope derived from lymphocytic choriomeningitis virus) and OVA323-339 (a CD4 T cell epitope derived from ovalbumin), to modulate the CD8+ and CD4+ T cells from two transgenic mouse strains, P14 and DO11.10, respectively. Firstly, it was found that the injection of P14 mice with particles bearing the MHC I-restricted GP33-41 peptide resulted in the expansion of CD8+ T cells with a regulatory cell phenotype. This correlated with reduced CD4+ T cell viability in ex vivo co-cultures. Secondly, both nanoparticle types were able to sequester transgenic T cells in secondary lymphoid tissue. Flow cytometric analyses showed a reduction in the surface expression of chemokine receptors. Such an effect was more prominently observed in the CD4+ cells rather than the CD8+ cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença Celíaca/terapia , Tolerância Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos/imunologia , Antígenos/farmacologia , Antígenos Virais/imunologia , Antígenos Virais/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Doença Celíaca/genética , Doença Celíaca/imunologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/farmacologia , Glicoproteínas/imunologia , Glicoproteínas/farmacologia , Humanos , Tolerância Imunológica/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Nanopartículas/química , Ovalbumina/imunologia , Ovalbumina/farmacologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Peptídeos/imunologia , Peptídeos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Proteínas Virais/imunologia , Proteínas Virais/farmacologia
13.
Influenza Res Treat ; 2011: 126794, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23074652

RESUMO

Using peptide nanoparticle technology, we have designed two novel vaccine constructs representing M2e in monomeric (Mono-M2e) and tetrameric (Tetra-M2e) forms. Groups of specific pathogen free (SPF) chickens were immunized intramuscularly with Mono-M2e or Tetra-M2e with and without an adjuvant. Two weeks after the second boost, chickens were challenged with 107.2 EID50 of H5N2 low pathogenicity avian influenza (LPAI) virus. M2e-specific antibody responses to each of the vaccine constructs were tested by ELISA. Vaccinated chickens exhibited increased M2e-specific IgG responses for each of the constructs as compared to a non-vaccinated group. However, the vaccine construct Tetra-M2e elicited a significantly higher antibody response when it was used with an adjuvant. On the other hand, virus neutralization assays indicated that immune protection is not by way of neutralizing antibodies. The level of protection was evaluated using quantitative real time PCR at 4, 6, and 8 days post-challenge with H5N2 LPAI by measuring virus shedding from trachea and cloaca. The Tetra-M2e with adjuvant offered statistically significant (P < 0.05) protection against subtype H5N2 LPAI by reduction of the AI virus shedding. The results suggest that the self-assembling polypeptide nanoparticle shows promise as a potential platform for a development of a vaccine against AI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA