Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R835-R849, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274938

RESUMO

Evidence of sex-specific differences in renin-angiotensin-system (RAS) and arterial pressure has been shown in many mammals, including spontaneously hypertensive rats (SHRs). Although SHRs have been used extensively as a leading experimental model of hypertension, the effects of sex-specific differences in RAS on aortic function and related cardiac remodeling during aging and hypertension have not been documented in detail. We examined structural and functional changes in aorta and heart of female and male SHRs at the ages of 5, 14, 29, and 36 wk. SHRs of both sexes were hypertensive from 14 wk. Aortic endothelial dysfunction and fibrosis, left ventricular (LV) hypertrophy, and cardiac fibrosis were evident at the age of 29 wk in male SHRs but first appeared only at the age of 36 wk in female SHRs. There was a pronounced delay of matrix metalloproteinase-2 activity in the aorta and heart of female SHRs, which was associated with preservation of 40% more elastin and less extensive cardiac fibrosis than in males. At 5, 29, and 36 wk of age, female SHRs showed higher levels of aortic and myocardial AT2R and MasR mRNA and decreased ANG II-mediated aortic constriction. Although female SHRs had increased relaxation to AT2R stimulation at 5 and 29 wk compared with males, this difference disappeared at 36 wk of age. This study documents sex-specific differences in the temporal progression of aortic dysfunction and LV hypertrophy in SHRs, which are independent of arterial pressure and are apparently mediated by higher AT2R expression in the heart and aorta of female SHRs.


Assuntos
Envelhecimento , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Hipertensão/patologia , Hipertensão/fisiopatologia , Remodelação Ventricular , Animais , Doenças da Aorta/etiologia , Progressão da Doença , Feminino , Hipertensão/complicações , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Caracteres Sexuais
2.
Cardiovasc Res ; 109(3): 409-18, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598508

RESUMO

AIMS: Aortic stiffness is an independent risk factor for progression of cardiovascular diseases. Degradation of elastic fibres in aorta due to angiotensin II (ANGII)-stimulated overactivation of latent membrane type 1 matrix metalloproteinase (MT1MMP) and matrix metalloproteinase-2 (MMP2) is regarded to represent an important cause of aortic stiffness. Therefore, clarification of the causal mechanisms triggering the overactivation of these MMPs is of utmost importance. This study addresses the endothelium as a novel key activator of latent pro-MT1MMP and pro-MMP2 in rat aorta. METHODS AND RESULTS: Using a co-culture model of rat aortic endothelial cells (ECs) and smooth muscle cells (SMCs), we found that ANGII stimulation resulted in activation of latent pro-MT1MMP and pro-MMP2 in SMCs exclusively when co-cultured with ECs (assessed with western blot and gelatin zymography, respectively). EC-specific AT1 receptor stimulation triggered endothelin-1 release and paracrine action on SMCs. Endothelin-1 increased expression and activity of pro-protein convertase furin in SMCs via endothelin receptor type A (assessed with qPCR and furin activity assay, respectively). Consequently, furin acted in two ways. First, it increased the activation of latent pro-MT1MMP and, second, it activated pro-αvß3 integrin. Both pathways led to overactivation of latent pro-MMP2. In vitro findings in the co-culture model were fully consistent with the ex vivo findings obtained in isolated rat aorta. CONCLUSIONS: We propose that the endothelium under ANGII stimulation acts as a novel and key activator of latent pro-MT1MMP and pro-MMP2 in SMCs of rat aorta. Therefore, endothelium may critically contribute to pathophysiology of aortic stiffness.


Assuntos
Aorta/metabolismo , Células Endoteliais/metabolismo , Endotelina-1/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Endotélio/metabolismo , Miócitos de Músculo Liso/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA